Last updated: 2018-08-31

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(1)

    The command set.seed(1) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: f17adec

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .DS_Store
        Ignored:    .Rhistory
        Ignored:    .Rproj.user/
        Ignored:    analysis/.DS_Store
        Ignored:    analysis/.Rhistory
        Ignored:    analysis/include/.DS_Store
        Ignored:    code/.DS_Store
        Ignored:    data/.DS_Store
        Ignored:    docs/.DS_Store
        Ignored:    output/.DS_Store
    
    Untracked files:
        Untracked:  analysis/Classify.Rmd
        Untracked:  analysis/EstimateCorMaxEM.Rmd
        Untracked:  analysis/EstimateCorMaxEMGD.Rmd
        Untracked:  analysis/EstimateCorOptimEM.Rmd
        Untracked:  analysis/EstimateCorPrior.Rmd
        Untracked:  analysis/EstimateCorSol.Rmd
        Untracked:  analysis/HierarchicalFlashSim.Rmd
        Untracked:  analysis/Mash_GTEx.Rmd
        Untracked:  analysis/MeanAsh.Rmd
        Untracked:  analysis/OutlierDetection.Rmd
        Untracked:  analysis/OutlierDetection2.Rmd
        Untracked:  analysis/OutlierDetection3.Rmd
        Untracked:  analysis/OutlierDetection4.Rmd
        Untracked:  analysis/Test.Rmd
        Untracked:  analysis/mash_missing_row.Rmd
        Untracked:  code/GTExNullModel.R
        Untracked:  code/MashClassify.R
        Untracked:  code/MashCorResult.R
        Untracked:  code/MashNULLCorResult.R
        Untracked:  code/MashSource.R
        Untracked:  code/Weight_plot.R
        Untracked:  code/addemV.R
        Untracked:  code/estimate_cor.R
        Untracked:  code/generateDataV.R
        Untracked:  code/johnprocess.R
        Untracked:  code/sim_mean_sig.R
        Untracked:  code/summary.R
        Untracked:  data/Blischak_et_al_2015/
        Untracked:  data/scale_data.rds
        Untracked:  docs/figure/Classify.Rmd/
        Untracked:  docs/figure/OutlierDetection.Rmd/
        Untracked:  docs/figure/OutlierDetection2.Rmd/
        Untracked:  docs/figure/OutlierDetection3.Rmd/
        Untracked:  docs/figure/Test.Rmd/
        Untracked:  docs/figure/mash_missing_whole_row_5.Rmd/
        Untracked:  docs/include/
        Untracked:  output/AddEMV/
        Untracked:  output/CovED_UKBio_strong.rds
        Untracked:  output/CovED_UKBio_strong_Z.rds
        Untracked:  output/Flash_UKBio_strong.rds
        Untracked:  output/GTExNULLres/
        Untracked:  output/GTEx_2.5_nullData.rds
        Untracked:  output/GTEx_2.5_nullModel.rds
        Untracked:  output/GTEx_2.5_nullPermData.rds
        Untracked:  output/GTEx_2.5_nullPermModel.rds
        Untracked:  output/GTEx_3.5_nullData.rds
        Untracked:  output/GTEx_3.5_nullModel.rds
        Untracked:  output/GTEx_3.5_nullPermData.rds
        Untracked:  output/GTEx_3.5_nullPermModel.rds
        Untracked:  output/GTEx_3_nullData.rds
        Untracked:  output/GTEx_3_nullModel.rds
        Untracked:  output/GTEx_3_nullPermData.rds
        Untracked:  output/GTEx_3_nullPermModel.rds
        Untracked:  output/GTEx_4.5_nullData.rds
        Untracked:  output/GTEx_4.5_nullModel.rds
        Untracked:  output/GTEx_4.5_nullPermData.rds
        Untracked:  output/GTEx_4.5_nullPermModel.rds
        Untracked:  output/GTEx_4_nullData.rds
        Untracked:  output/GTEx_4_nullModel.rds
        Untracked:  output/GTEx_4_nullPermData.rds
        Untracked:  output/GTEx_4_nullPermModel.rds
        Untracked:  output/MASH.10.em2.result.rds
        Untracked:  output/MASH.10.mle.result.rds
        Untracked:  output/MASHNULL.V.result.1.rds
        Untracked:  output/MASHNULL.V.result.10.rds
        Untracked:  output/MASHNULL.V.result.11.rds
        Untracked:  output/MASHNULL.V.result.12.rds
        Untracked:  output/MASHNULL.V.result.13.rds
        Untracked:  output/MASHNULL.V.result.14.rds
        Untracked:  output/MASHNULL.V.result.15.rds
        Untracked:  output/MASHNULL.V.result.16.rds
        Untracked:  output/MASHNULL.V.result.17.rds
        Untracked:  output/MASHNULL.V.result.18.rds
        Untracked:  output/MASHNULL.V.result.19.rds
        Untracked:  output/MASHNULL.V.result.2.rds
        Untracked:  output/MASHNULL.V.result.20.rds
        Untracked:  output/MASHNULL.V.result.3.rds
        Untracked:  output/MASHNULL.V.result.4.rds
        Untracked:  output/MASHNULL.V.result.5.rds
        Untracked:  output/MASHNULL.V.result.6.rds
        Untracked:  output/MASHNULL.V.result.7.rds
        Untracked:  output/MASHNULL.V.result.8.rds
        Untracked:  output/MASHNULL.V.result.9.rds
        Untracked:  output/MashCorSim--midway/
        Untracked:  output/Mash_EE_Cov_0_plusR1.rds
        Untracked:  output/UKBio_mash_model.rds
    
    Unstaged changes:
        Deleted:    analysis/MashLowSignalGTEx3.5P.Rmd
        Modified:   analysis/Mash_UKBio.Rmd
        Modified:   analysis/mash_missing_samplesize.Rmd
        Modified:   output/Flash_T2_0.rds
        Modified:   output/Flash_T2_0_mclust.rds
        Modified:   output/Mash_model_0_plusR1.rds
        Modified:   output/PresiAddVarCol.rds
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    Rmd f17adec zouyuxin 2018-08-31 wflow_publish(“analysis/MashLowSignalGTEx3.5.Rmd”)
    html e1bff26 zouyuxin 2018-08-31 Build site.
    Rmd ef3e8e3 zouyuxin 2018-08-31 wflow_publish(“analysis/MashLowSignalGTEx3.5.Rmd”)
    html 62d0375 zouyuxin 2018-08-30 Build site.
    Rmd 2b58dca zouyuxin 2018-08-30 wflow_publish(“analysis/MashLowSignalGTEx3.5.Rmd”)
    html a36b08e zouyuxin 2018-08-30 Build site.
    Rmd 5dfd60c zouyuxin 2018-08-30 wflow_publish(“analysis/MashLowSignalGTEx3.5.Rmd”)
    html e9f5a34 zouyuxin 2018-08-30 Build site.
    Rmd 8cb0635 zouyuxin 2018-08-30 wflow_publish(“analysis/MashLowSignalGTEx3.5.Rmd”)


library(mashr)
Loading required package: ashr
library(knitr)
library(kableExtra)

There are two random sets in the GTEx summary data set. We don’t know the null in the real data. If we have the individual level data, we can do a permutation to generate null. With the summary statistics, we select the null set using threshold on z scores.

Using qvalues 0.05 as the threshold, the corresponding non-significant |z| values are less than 3.5. We select the samples with \(\max_{r} |Z_{jr}| < 3.5\) from each data set as the null set. We estimate data driven covariance matrices from data 1, estimate noise correlation from data 2, fit mash model on data 2 and calculate posterior on data 1.

data = readRDS('../output/GTEx_3.5_nullData.rds')
model = readRDS('../output/GTEx_3.5_nullModel.rds')

Sample size:

samplesize = matrix(c(nrow(data$m.data1.null$Bhat), nrow(data$m.data2.null$Bhat)))
row.names(samplesize) = c('data 1', 'data 2')
samplesize %>% kable() %>% kable_styling()
data 1 18189
data 2 25718

The estimated weights from data 2 is

barplot(get_estimated_pi(model), las=2, cex.names = 0.7)

Expand here to see past versions of unnamed-chunk-4-1.png:
Version Author Date
e1bff26 zouyuxin 2018-08-31

The estimated weights \(\hat{\pi}\) on null part is not large. The weight on the other covariance structures may concentrate on the small grid (small \(\omega_{l}\)). So they are very close to null, but we cannot view it in the plot. I modified the get_estimated_pi function to have a threshold for grid. The weights on the grid less than the threshold are merged into the null part.

get_estimated_pi = function(m, dimension = c("cov", "grid", "all"), thres = NULL){
  dimension = match.arg(dimension)
  if (dimension == "all") {
      get_estimated_pi_no_collapse(m)
  }
  else {
      g = get_fitted_g(m)
      pihat = g$pi
      pihat_names = NULL
      pi_null = NULL
      if (g$usepointmass) {
        pihat_names = c("null", pihat_names)
        pi_null = pihat[1]
        pihat = pihat[-1]
      }
      pihat = matrix(pihat, nrow = length(g$Ulist))
      if(!is.null(thres)){
        pi_null = sum(pihat[, g$grid <= thres]) + pi_null
        pihat = pihat[, g$grid > thres]
      }
      if (dimension == "cov"){
        pihat = rowSums(pihat)
        pihat_names = c(pihat_names, names(g$Ulist))
      }
      else if (dimension == "grid") {
        pihat = colSums(pihat)
        pihat_names = c(pihat_names, 1:length(g$grid))
      }
      pihat = c(pi_null, pihat)
      names(pihat) = pihat_names
      return(pihat)
  }
}
barplot(get_estimated_pi(model, thres = 0.01), las=2, cex.names = 0.7, main='Estimated pi with threshold (0.01) in grid')

Expand here to see past versions of unnamed-chunk-6-1.png:
Version Author Date
e9f5a34 zouyuxin 2018-08-30

The correlation for the ED_tPCA is

corrplot::corrplot(cov2cor(model$fitted_g$Ulist[['ED_tPCA']]))

Expand here to see past versions of unnamed-chunk-7-1.png:
Version Author Date
e9f5a34 zouyuxin 2018-08-30

There are 483 significant samples in data 1.

Permute samples in each condition to break the sharing

mash increases power, because it considers the sharing among conditions. We permute samples in each condition to break the sharing.

data = readRDS('../output/GTEx_3.5_nullPermData.rds')
model = readRDS('../output/GTEx_3.5_nullPermModel.rds')

Sample size:

samplesize = matrix(c(nrow(data$m.data1.p.null$Bhat), nrow(data$m.data2.p.null$Bhat)))
row.names(samplesize) = c('data 1', 'data 2')
samplesize %>% kable() %>% kable_styling()
data 1 18189
data 2 25718

The estimated weights from data 2 is

barplot(get_estimated_pi(model), las=2, cex.names = 0.7, main = 'Estiamted pi')

Expand here to see past versions of unnamed-chunk-10-1.png:
Version Author Date
e1bff26 zouyuxin 2018-08-31
e9f5a34 zouyuxin 2018-08-30

barplot(get_estimated_pi(model, thres = 0.01), las=2, cex.names = 0.7, main='Estimated pi with threshold (0.01) in grid')

Expand here to see past versions of unnamed-chunk-11-1.png:
Version Author Date
e1bff26 zouyuxin 2018-08-31
e9f5a34 zouyuxin 2018-08-30

There are 44 significant samples in data 1.

There is no overfitting issue.

Session information

sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS High Sierra 10.13.6

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] kableExtra_0.9.0 knitr_1.20       mashr_0.2-11     ashr_2.2-10     

loaded via a namespace (and not attached):
 [1] Rcpp_0.12.18      highr_0.7         pillar_1.3.0     
 [4] compiler_3.5.1    git2r_0.23.0      plyr_1.8.4       
 [7] workflowr_1.1.1   R.methodsS3_1.7.1 R.utils_2.6.0    
[10] iterators_1.0.10  tools_3.5.1       corrplot_0.84    
[13] digest_0.6.15     viridisLite_0.3.0 tibble_1.4.2     
[16] evaluate_0.11     lattice_0.20-35   pkgconfig_2.0.2  
[19] rlang_0.2.2       Matrix_1.2-14     foreach_1.4.4    
[22] rstudioapi_0.7    yaml_2.2.0        parallel_3.5.1   
[25] mvtnorm_1.0-8     xml2_1.2.0        httr_1.3.1       
[28] stringr_1.3.1     hms_0.4.2         rprojroot_1.3-2  
[31] grid_3.5.1        R6_2.2.2          rmarkdown_1.10   
[34] rmeta_3.0         readr_1.1.1       magrittr_1.5     
[37] whisker_0.3-2     scales_1.0.0      backports_1.1.2  
[40] codetools_0.2-15  htmltools_0.3.6   MASS_7.3-50      
[43] rvest_0.3.2       assertthat_0.2.0  colorspace_1.3-2 
[46] stringi_1.2.4     munsell_0.5.0     doParallel_1.0.11
[49] pscl_1.5.2        truncnorm_1.0-8   SQUAREM_2017.10-1
[52] crayon_1.3.4      R.oo_1.22.0      

This reproducible R Markdown analysis was created with workflowr 1.1.1