Last updated: 2018-08-30

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(1)

    The command set.seed(1) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: 91fe4ce

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .DS_Store
        Ignored:    .Rhistory
        Ignored:    .Rproj.user/
        Ignored:    analysis/.DS_Store
        Ignored:    analysis/.Rhistory
        Ignored:    analysis/include/.DS_Store
        Ignored:    code/.DS_Store
        Ignored:    data/.DS_Store
        Ignored:    docs/.DS_Store
        Ignored:    output/.DS_Store
    
    Untracked files:
        Untracked:  analysis/Classify.Rmd
        Untracked:  analysis/EstimateCorMaxEM.Rmd
        Untracked:  analysis/EstimateCorMaxEMGD.Rmd
        Untracked:  analysis/EstimateCorOptimEM.Rmd
        Untracked:  analysis/EstimateCorPrior.Rmd
        Untracked:  analysis/EstimateCorSol.Rmd
        Untracked:  analysis/HierarchicalFlashSim.Rmd
        Untracked:  analysis/MashLowSignalGTExPerm.Rmd
        Untracked:  analysis/MashLowSignalIndex.Rmd
        Untracked:  analysis/Mash_GTEx.Rmd
        Untracked:  analysis/MeanAsh.Rmd
        Untracked:  analysis/OutlierDetection.Rmd
        Untracked:  analysis/OutlierDetection2.Rmd
        Untracked:  analysis/OutlierDetection3.Rmd
        Untracked:  analysis/OutlierDetection4.Rmd
        Untracked:  analysis/Test.Rmd
        Untracked:  analysis/mash_missing_row.Rmd
        Untracked:  code/GTExNullModel.R
        Untracked:  code/MashClassify.R
        Untracked:  code/MashCorResult.R
        Untracked:  code/MashNULLCorResult.R
        Untracked:  code/MashSource.R
        Untracked:  code/Weight_plot.R
        Untracked:  code/addemV.R
        Untracked:  code/estimate_cor.R
        Untracked:  code/generateDataV.R
        Untracked:  code/johnprocess.R
        Untracked:  code/sim_mean_sig.R
        Untracked:  code/summary.R
        Untracked:  data/Blischak_et_al_2015/
        Untracked:  data/scale_data.rds
        Untracked:  docs/figure/Classify.Rmd/
        Untracked:  docs/figure/MashLowSignalGTExPerm.Rmd/
        Untracked:  docs/figure/OutlierDetection.Rmd/
        Untracked:  docs/figure/OutlierDetection2.Rmd/
        Untracked:  docs/figure/OutlierDetection3.Rmd/
        Untracked:  docs/figure/Test.Rmd/
        Untracked:  docs/figure/mash_missing_whole_row_5.Rmd/
        Untracked:  docs/include/
        Untracked:  output/AddEMV/
        Untracked:  output/CovED_UKBio_strong.rds
        Untracked:  output/CovED_UKBio_strong_Z.rds
        Untracked:  output/Flash_UKBio_strong.rds
        Untracked:  output/GTExNULLres/
        Untracked:  output/GTEx_2.5_nullData.rds
        Untracked:  output/GTEx_2.5_nullModel.rds
        Untracked:  output/GTEx_2.5_nullPermData.rds
        Untracked:  output/GTEx_2.5_nullPermModel.rds
        Untracked:  output/GTEx_3.5_nullData.rds
        Untracked:  output/GTEx_3.5_nullModel.rds
        Untracked:  output/GTEx_3.5_nullPermData.rds
        Untracked:  output/GTEx_3.5_nullPermModel.rds
        Untracked:  output/GTEx_3_nullData.rds
        Untracked:  output/GTEx_3_nullModel.rds
        Untracked:  output/GTEx_3_nullPermData.rds
        Untracked:  output/GTEx_3_nullPermModel.rds
        Untracked:  output/GTEx_4.5_nullData.rds
        Untracked:  output/GTEx_4.5_nullModel.rds
        Untracked:  output/GTEx_4.5_nullPermData.rds
        Untracked:  output/GTEx_4.5_nullPermModel.rds
        Untracked:  output/GTEx_4_nullData.rds
        Untracked:  output/GTEx_4_nullModel.rds
        Untracked:  output/GTEx_4_nullPermData.rds
        Untracked:  output/GTEx_4_nullPermModel.rds
        Untracked:  output/MASH.10.em2.result.rds
        Untracked:  output/MASH.10.mle.result.rds
        Untracked:  output/MASHNULL.V.result.1.rds
        Untracked:  output/MASHNULL.V.result.10.rds
        Untracked:  output/MASHNULL.V.result.11.rds
        Untracked:  output/MASHNULL.V.result.12.rds
        Untracked:  output/MASHNULL.V.result.13.rds
        Untracked:  output/MASHNULL.V.result.14.rds
        Untracked:  output/MASHNULL.V.result.15.rds
        Untracked:  output/MASHNULL.V.result.16.rds
        Untracked:  output/MASHNULL.V.result.17.rds
        Untracked:  output/MASHNULL.V.result.18.rds
        Untracked:  output/MASHNULL.V.result.19.rds
        Untracked:  output/MASHNULL.V.result.2.rds
        Untracked:  output/MASHNULL.V.result.20.rds
        Untracked:  output/MASHNULL.V.result.3.rds
        Untracked:  output/MASHNULL.V.result.4.rds
        Untracked:  output/MASHNULL.V.result.5.rds
        Untracked:  output/MASHNULL.V.result.6.rds
        Untracked:  output/MASHNULL.V.result.7.rds
        Untracked:  output/MASHNULL.V.result.8.rds
        Untracked:  output/MASHNULL.V.result.9.rds
        Untracked:  output/MashCorSim--midway/
        Untracked:  output/Mash_EE_Cov_0_plusR1.rds
        Untracked:  output/UKBio_mash_model.rds
    
    Unstaged changes:
        Modified:   analysis/Mash_UKBio.Rmd
        Modified:   analysis/mash_missing_samplesize.Rmd
        Modified:   output/Flash_T2_0.rds
        Modified:   output/Flash_T2_0_mclust.rds
        Modified:   output/Mash_model_0_plusR1.rds
        Modified:   output/PresiAddVarCol.rds
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    Rmd 91fe4ce zouyuxin 2018-08-30 wflow_publish(“analysis/MashLowSignalGTEx.Rmd”)


library(mashr)
Loading required package: ashr
library(knitr)
library(kableExtra)
get_estimated_pi = function(m, dimension = c("cov", "grid", "all"), thres = NULL){
  dimension = match.arg(dimension)
  if (dimension == "all") {
      get_estimated_pi_no_collapse(m)
  }
  else {
      g = get_fitted_g(m)
      pihat = g$pi
      pihat_names = NULL
      pi_null = NULL
      if (g$usepointmass) {
        pihat_names = c("null", pihat_names)
        pi_null = pihat[1]
        pihat = pihat[-1]
      }
      pihat = matrix(pihat, nrow = length(g$Ulist))
      if(!is.null(thres)){
        pi_null = sum(pihat[, g$grid <= thres]) + pi_null
        pihat = pihat[, g$grid > thres]
      }
      if (dimension == "cov"){
        pihat = rowSums(pihat)
        pihat_names = c(pihat_names, names(g$Ulist))
      }
      else if (dimension == "grid") {
        pihat = colSums(pihat)
        pihat_names = c(pihat_names, 1:length(g$grid))
      }
      pihat = c(pi_null, pihat)
      names(pihat) = pihat_names
      return(pihat)
  }
}

There are two random sets in the GTEx summary data set.

We select the samples with max \(|Z_{jr}|<threshold\) from each data set as the null set. We estimate data driven covariance matrices from data 1, estimate noise correlation from data 2, fit mash model on data 2 and calculate posterior on data 1

Threshold = 2.5

data = readRDS('../output/GTEx_2.5_nullData.rds')
model = readRDS('../output/GTEx_2.5_nullModel.rds')

Sample size:

samplesize = matrix(c(nrow(data$m.data1.null$Bhat), nrow(data$m.data2.null$Bhat)))
row.names(samplesize) = c('data 1', 'data 2')
samplesize %>% kable() %>% kable_styling()
data 1 10003
data 2 14078
barplot(get_estimated_pi(model, thres = 0.01), las=2, cex.names = 0.7)

There are 8 significant samples in data 1.

Threshold = 3

data = readRDS('../output/GTEx_3_nullData.rds')
model = readRDS('../output/GTEx_3_nullModel.rds')

Sample size:

samplesize = matrix(c(nrow(data$m.data1.null$Bhat), nrow(data$m.data2.null$Bhat)))
row.names(samplesize) = c('data 1', 'data 2')
samplesize %>% kable() %>% kable_styling()
data 1 15948
data 2 22541
barplot(get_estimated_pi(model, thres=0.01), las=2, cex.names = 0.7)

The ED_tPCA is

corrplot::corrplot(cov2cor(model$fitted_g$Ulist[['ED_tPCA']]))

There are 148 significant samples in data 1.

Threshold = 3.5

data = readRDS('../output/GTEx_3.5_nullData.rds')
model = readRDS('../output/GTEx_3.5_nullModel.rds')

Sample size:

samplesize = matrix(c(nrow(data$m.data1.null$Bhat), nrow(data$m.data2.null$Bhat)))
row.names(samplesize) = c('data 1', 'data 2')
samplesize %>% kable() %>% kable_styling()
data 1 18189
data 2 25718
barplot(get_estimated_pi(model, thres=0.01), las=2, cex.names = 0.7)

There are 483 significant samples in data 1.

Threshold = 4

data = readRDS('../output/GTEx_4_nullData.rds')
model = readRDS('../output/GTEx_4_nullModel.rds')

Sample size:

samplesize = matrix(c(nrow(data$m.data1.null$Bhat), nrow(data$m.data2.null$Bhat)))
row.names(samplesize) = c('data 1', 'data 2')
samplesize %>% kable() %>% kable_styling()
data 1 18993
data 2 26784
barplot(get_estimated_pi(model, thres = 0.01), las=2, cex.names = 0.7)

There are 814 significant samples in data 1.

Threshold = 4.5

data = readRDS('../output/GTEx_4.5_nullData.rds')
model = readRDS('../output/GTEx_4.5_nullModel.rds')

Sample size:

samplesize = matrix(c(nrow(data$m.data1.null$Bhat), nrow(data$m.data2.null$Bhat)))
row.names(samplesize) = c('data 1', 'data 2')
samplesize %>% kable() %>% kable_styling()
data 1 19301
data 2 27246
barplot(get_estimated_pi(model, thres=0.01), las=2, cex.names = 0.7)

There are 1079 significant samples in data 1.

Session information

sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS High Sierra 10.13.6

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] kableExtra_0.9.0 knitr_1.20       mashr_0.2-11     ashr_2.2-10     

loaded via a namespace (and not attached):
 [1] Rcpp_0.12.18      highr_0.7         pillar_1.3.0     
 [4] compiler_3.5.1    git2r_0.23.0      plyr_1.8.4       
 [7] workflowr_1.1.1   R.methodsS3_1.7.1 R.utils_2.6.0    
[10] iterators_1.0.10  tools_3.5.1       corrplot_0.84    
[13] digest_0.6.15     viridisLite_0.3.0 tibble_1.4.2     
[16] evaluate_0.11     lattice_0.20-35   pkgconfig_2.0.2  
[19] rlang_0.2.2       Matrix_1.2-14     foreach_1.4.4    
[22] rstudioapi_0.7    yaml_2.2.0        parallel_3.5.1   
[25] mvtnorm_1.0-8     xml2_1.2.0        httr_1.3.1       
[28] stringr_1.3.1     hms_0.4.2         rprojroot_1.3-2  
[31] grid_3.5.1        R6_2.2.2          rmarkdown_1.10   
[34] rmeta_3.0         readr_1.1.1       magrittr_1.5     
[37] whisker_0.3-2     scales_1.0.0      backports_1.1.2  
[40] codetools_0.2-15  htmltools_0.3.6   MASS_7.3-50      
[43] rvest_0.3.2       assertthat_0.2.0  colorspace_1.3-2 
[46] stringi_1.2.4     munsell_0.5.0     doParallel_1.0.11
[49] pscl_1.5.2        truncnorm_1.0-8   SQUAREM_2017.10-1
[52] crayon_1.3.4      R.oo_1.22.0      

This reproducible R Markdown analysis was created with workflowr 1.1.1