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1 Background

The MASH model is

b̂j |bj , Ŝj ∼ NR(bj , ŜjV Ŝj), (1.1)

bj |π ∼
K∑
k=1

L∑
l=1

πklNR(0, ωlUk). (1.2)

Let P = KL, Σp = ωlUk, we can re-write (1.2) as

bj |π ∼
P∑
p=1

πpNR(0,Σp) (1.3)

The goal is estimating V and π by maximum likelihood.

p(B̂) =

J∏
j=1

p(b̂j) =

J∏
j=1

P∑
p=1

πpNR(b̂j ;0, ŜjV Ŝj + Σp) (1.4)

Specifically, we estimate them by coordinate ascend. Given V , we estimate π by solving a concave
problem. Given π, we want to estimate V by maximum likelihood.

2 The Fake Method

The method described below is not the exact correct EM updates. There is a problem in M step
and I described it in the last part of this section. The exact one is in Section 3.

Given π, it is hard to estimate V by maximizing log of (1.4), so we use EM algorithm. Given
π(t), we augment each b̂j with corresponding bj and its mixture membership index γj ∈ [1, · · · , p],
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p(γj = p) = π(t)p. The complete likelihood is

p(B̂,B,γ) =
J∏
j=1

P∏
p=1

[
π(t)pNR(bj ;0,Σp)NR(b̂j ; bj , ŜjV Ŝj)

]I(γj=p)
(2.1)

2.1 E step

To get the objective function in E step, we need to compute the posterior distribution for γ, B
given B̂,

p(γj = p, bj |b̂j ,V ,π) =
p(γj = p, bj , b̂j |V ,π)

p(b̂j |V ,π)
=
p(b̂j |bj ,V )p(bj |γj = p)p(γj = p)

p(b̂j |π)
(2.2)

=
πpNR(b̂j ; bj , ŜjV Ŝj)NR(bj ;0,Σp)∑

p′ πp′NR(b̂j ;0, ŜjV Ŝj + Σp′)
(2.3)

=
πpNR(b̂j ;0, ŜjV Ŝj + Σp)∑
p′ πp′NR(b̂j ;0, ŜjV Ŝj + Σp′)

NR(b̂j ; bj , ŜjV Ŝj)NR(bj ;0,Σp)

NR(b̂j ;0, ŜjV Ŝj + Σp)
. (2.4)

Let

π̃jp = P (γj = p|b̂j ,V ,π) =
πpNR(b̂j ;0, ŜjV Ŝj + Σp)∑
p′ πp′NR(b̂j ;0, ŜjV Ŝj + Σp′)

, (2.5)

the posterior for γ, B given B̂ is

p(γj = p, bj |b̂j ,V ,π) = π̃jpP (bj |γj = p, b̂j ,V ) (2.6)

The posterior of bj given γj = p is

bj |b̂j ,V , γj = p ∼ N(µ̃jp, Σ̃jp) (2.7)

Σ̃jp = Σp(I + Ŝ−1j V −1Ŝ−1j Σp)
−1 (2.8)

µ̃jp = Σ̃jpŜ
−1
j V −1Ŝ−1j b̂j (2.9)

Integrating over γj , the posterior of bj is

bj |b̂j ,V ,π ∼
P∑
p=1

π̃jpN(µ̃jp, Σ̃jp), (2.10)
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with the following first and second moments:

µ̃j = E(bj |b̂j ,V ,π) =

P∑
p=1

π̃jpµ̃jp (2.11)

E(bjb
T
j |b̂j ,V ,π) =

P∑
p=1

π̃jp(Σ̃jp + µ̃jpµ̃
T
jp) (2.12)

Qj ≡ E((b̂j − bj)(b̂j − bj)T |b̂j ,V ,π) = b̂j b̂
T
j − b̂jµ̃Tj − µ̃j b̂Tj + E(bjb

T
j |b̂j ,V ,π) (2.13)

We replace V and π with estimates from the previous step, V(t),π(t). Let q(·) = Ebj |B̂,V(t),π(t)
(·).

Taking log of (2.1),

log p(B̂,B,γ) =

J∑
j=1

P∑
p=1

I(γj = p)
[
logπ(t)p + logNR(bj ;0,Σp) + logNR(b̂j ; bj , ŜjV Ŝj)

]
(2.14)

=
J∑
j=1

P∑
p=1

I(γj = p)

[
logπ(t)p −

1

2
log |V | − 1

2
(b̂j − bj)T Ŝ−1j V −1Ŝ−1j (b̂j − bj)

]
+ C

(2.15)

where C is a constant that does not depend on V .
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Taking expectations of (2.15), we have

EB,γ|B̂,V(t),π(t)
log p(B̂,B,γ) (2.16)

= Eγ|B̂,V(t),π(t)

[
EB|γ,B̂,V(t),π(t)

[
log p(B̂,B,γ)

]]
(2.17)

= Eγ|B̂,V(t),π(t)

 J∑
j=1

P∑
p=1

I(γj = p) logπ(t)p −
1

2
J log |V |−

1

2

J∑
j=1

P∑
p=1

I(γj = p)Ebj |γj=p,B̂,V(t),π(t)
(b̂j − bj)T Ŝ−1j V −1Ŝ−1j (b̂j − bj)

 (2.18)

=

J∑
j=1

P∑
p=1

π̃jp logπ(t)p −
1

2
J log |V |−

1

2

J∑
j=1

P∑
p=1

π̃jpEbj |γj=p,B̂,V(t),π(t)
(b̂j − bj)T Ŝ−1j V −1Ŝ−1j (b̂j − bj) (2.19)

=
J∑
j=1

P∑
p=1

π̃jp logπ(t)p −
1

2
J log |V | − 1

2

J∑
j=1

Ebj |B̂,V(t),π(t)
(b̂j − bj)T Ŝ−1j V −1Ŝ−1j (b̂j − bj) (2.20)

=

J∑
j=1

P∑
p=1

π̃jp logπ(t)p −
1

2
J log |V | − 1

2

J∑
j=1

tr(V −1Ŝ−1j QjŜ
−1
j ) (2.21)

Note that (2.19) to (2.20) is true because E(X) = E(E(X|Y )).

2.2 Fake M step

We want to maximize (2.21) over V . There is a constraint on V , the diagonal of V must be 1 since
it is a correlation matrix. Let V = DCD, C is the covariance matrix, D = diag(1/

√
Cjj). We

maximize (2.21) over C and ignore the diagonal matrix D which depends on C. The estimated V
is the corresponding correlation matrix for C. Since we maximize (2.21) with respect to C, not V ,
the log likelihood may drop. We call this fake M step. Although it is not a true EM algorithm, we
use it in mashr. Because the log likelihood increases a lot in the first few iterations, we perform
the algorithm with a few iterations.

The objective function with respect to C is

f(C) =

J∑
j=1

−1

2
log |V | − 1

2
tr(V −1Ŝ−1j QjŜ

−1
j ) (2.22)

=

J∑
j=1

−1

2
log |DCD| − 1

2
tr(C−1D−1Ŝ−1j QjŜ

−1
j D−1). (2.23)
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Taking derivative with respect to C,

f(C)′ =

J∑
j=1

−1

2
C−1 +

1

2
C−1D−1Ŝ−1j QjŜ

−1
j D−1C−1 = 0 (2.24)

C =
1

J
D−1

 J∑
j=1

Ŝ−1j QjŜ
−1
j

D−1. (2.25)

We can update C and V as

Ĉ(t+1) = D̂−1(t)

1

J

 J∑
j=1

Ŝ−1j QjŜ
−1
j

 D̂−1(t) (2.26)

D̂(t+1) = diag(1/
√
Ĉ(t+1)jj) (2.27)

V̂(t+1) = D̂(t+1)Ĉ(t+1)D̂(t+1) (2.28)

The resulting V̂(t+1) is equivalent as

Ĉ(t+1) =
1

J

 J∑
j=1

Ŝ−1j QjŜ
−1
j

 (2.29)

D̂(t+1) = diag(1/
√
Ĉ(t+1)jj) (2.30)

V̂(t+1) = D̂(t+1)Ĉ(t+1)D̂(t+1) (2.31)

We notice that updating V̂ requires the posterior of bj , which is obtained by mash model. We
perform coordinate ascend. Given V , we estimate π by solving a concave problem. Given π, we
perform one step of EM.

The algorithm is

Algorithm 1 Estimate Null Correlation Fake

Require: mash data, covariance matrices Us, initial value of V
1: Given V , estimate π . concave problem
2: repeat
3: Given π, estimate V :

4: E step: compute the posterior distribution of b
5: Update C ← 2.29
6: Convert C to V ← 2.31
7: Given V , estimate π
8: Compute loglikelihood
9: until logliklihood does not increase

10: return V

5



3 Exact updates

Given π, we need to find the V maximize the objective function, (1.4) or (2.21). The objective
function is not a concave function for V , so it is unclear how to do the optimization with the
constrain that the diagonal elements of V are 1.

Pinheiro and Bates (1996) show different parametrizations for variance-covariance matrices that
leaves the estimation problem unconstrained. We use the spherical parametrization, which is based
on the Cholesky decomposition, V = LTL, L is an upper triangular matrix. Let Li be the ith
column of L, and li be the spherical coordinates of the first i elements of Li. Since the diagonal
elements of V are one, li,1 = 1 for all i = 1, · · · , R.

Li,1 = cos(li,2) (3.1)

Li,2 = sin(li,2) cos(li,3) (3.2)

· · · (3.3)

Li,i−1 = sin(li,2) · · · cos(li,i) (3.4)

Li,i = sin(li,2) · · · sin(li,i) (3.5)

To have unconstrained estimation, we define θ as follows:

θ(i−2)(i−1)/2+(j−1) = log

(
li,j

π − li,j

)
i = 2, · · · , R, j = 2, · · · , i (3.6)

Therefore, we find θ that maximize the objective function, not V , then convert the estimated θ to
V .

Algorithm 2 Estimate Null Correlation MLE

Require: mash data, covariance matrices Us, initial value of V
1: Given V , estimate π . concave problem
2: repeat
3: Parameterize V using θ
4: Given π, estimate θ that maximize (1.4) or (2.21) . optim or nlminb
5: Convert θ to V
6: Given V , estimate π . concave problem
7: Compute objective function
8: until objective function does not increase
9: return V
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4 Speed Considerations

Although the exact updates maximize the objective function, it is very slow to find a length
R(R − 1)/2 vector θ that achieves the maximum. So we use the Fake method in Section 2 in
mashr package.

The fake method also needs some time to converge, because the mash model is fitted at each
iteration. There are several things we can do to reduce the running time. First of all, we can
use a good initial value for V . We set it as the empirical correlation matrix of the z scores for
those effects that have (absolute) z score < 2 in all conditions. Moreover, we can set the number of
iterations to a small number (i.e. 3). Since there is a large improvement in the log likelihood within
the first few iterations, running the algorithm with small number of iterations provides estimates
of V that is better then the initial value. Finally, we can estimate V using a random subset of b̂j ,
j = 1, · · · , J .

The simulation results are in https://zouyuxin.github.io/mash_application/EstimateCorIndex.

html.
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