Last updated: 2018-10-24

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(1)

    The command set.seed(1) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: 0fe65ad

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .DS_Store
        Ignored:    .Rhistory
        Ignored:    .Rproj.user/
        Ignored:    analysis/.DS_Store
        Ignored:    analysis/.Rhistory
        Ignored:    analysis/include/.DS_Store
        Ignored:    code/.DS_Store
        Ignored:    data/.DS_Store
        Ignored:    docs/.DS_Store
        Ignored:    output/.DS_Store
    
    Untracked files:
        Untracked:  analysis/Classify.Rmd
        Untracked:  analysis/EstimateCorMaxEMGD.Rmd
        Untracked:  analysis/EstimateCorMaxGD.Rmd
        Untracked:  analysis/HierarchicalFlashSim.Rmd
        Untracked:  analysis/MashLowSignalGTEx4.Rmd
        Untracked:  analysis/Mash_GTEx.Rmd
        Untracked:  analysis/MeanAsh.Rmd
        Untracked:  analysis/OutlierDetection.Rmd
        Untracked:  analysis/OutlierDetection2.Rmd
        Untracked:  analysis/OutlierDetection3.Rmd
        Untracked:  analysis/OutlierDetection4.Rmd
        Untracked:  analysis/mash_missing_row.Rmd
        Untracked:  code/GTExNullModel.R
        Untracked:  code/MashClassify.R
        Untracked:  code/MashCorResult.R
        Untracked:  code/MashCormVResult.R
        Untracked:  code/MashNULLCorResult.R
        Untracked:  code/MashSource.R
        Untracked:  code/Weight_plot.R
        Untracked:  code/addemV.R
        Untracked:  code/estimate_cor.R
        Untracked:  code/generateDataV.R
        Untracked:  code/johnprocess.R
        Untracked:  code/mV.R
        Untracked:  code/sim_mean_sig.R
        Untracked:  code/summary.R
        Untracked:  data/Blischak_et_al_2015/
        Untracked:  data/scale_data.rds
        Untracked:  docs/figure/Classify.Rmd/
        Untracked:  docs/figure/OutlierDetection.Rmd/
        Untracked:  docs/figure/OutlierDetection2.Rmd/
        Untracked:  docs/figure/OutlierDetection3.Rmd/
        Untracked:  docs/figure/Test.Rmd/
        Untracked:  docs/figure/mash_missing_whole_row_5.Rmd/
        Untracked:  docs/include/
        Untracked:  output/AddEMV/
        Untracked:  output/CovED_UKBio_strong.rds
        Untracked:  output/CovED_UKBio_strong_Z.rds
        Untracked:  output/Flash_UKBio_strong.rds
        Untracked:  output/GTExNULLres/
        Untracked:  output/GTEx_2.5_nullData.rds
        Untracked:  output/GTEx_2.5_nullModel.rds
        Untracked:  output/GTEx_2.5_nullPermData.rds
        Untracked:  output/GTEx_2.5_nullPermModel.rds
        Untracked:  output/GTEx_3.5_nullData.rds
        Untracked:  output/GTEx_3.5_nullModel.rds
        Untracked:  output/GTEx_3.5_nullPermData.rds
        Untracked:  output/GTEx_3.5_nullPermModel.rds
        Untracked:  output/GTEx_3_nullData.rds
        Untracked:  output/GTEx_3_nullModel.rds
        Untracked:  output/GTEx_3_nullPermData.rds
        Untracked:  output/GTEx_3_nullPermModel.rds
        Untracked:  output/GTEx_4.5_nullData.rds
        Untracked:  output/GTEx_4.5_nullModel.rds
        Untracked:  output/GTEx_4.5_nullPermData.rds
        Untracked:  output/GTEx_4.5_nullPermModel.rds
        Untracked:  output/GTEx_4_nullData.rds
        Untracked:  output/GTEx_4_nullModel.rds
        Untracked:  output/GTEx_4_nullPermData.rds
        Untracked:  output/GTEx_4_nullPermModel.rds
        Untracked:  output/MASH.10.em2.result.rds
        Untracked:  output/MASH.10.mle.result.rds
        Untracked:  output/MashCorSim--midway/
        Untracked:  output/Mash_EE_Cov_0_plusR1.rds
        Untracked:  output/UKBio_mash_model.rds
        Untracked:  output/mVIterations/
        Untracked:  output/mVUlist/
        Untracked:  output/result.em.rds
    
    Unstaged changes:
        Deleted:    analysis/EstimateCorEM3.Rmd
        Modified:   analysis/EstimateCorMaxEM2.Rmd
        Modified:   analysis/Mash_UKBio.Rmd
        Modified:   analysis/mash_missing_samplesize.Rmd
        Modified:   output/Flash_T2_0.rds
        Modified:   output/Flash_T2_0_mclust.rds
        Modified:   output/Mash_model_0_plusR1.rds
        Modified:   output/PresiAddVarCol.rds
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    Rmd 0fe65ad zouyuxin 2018-10-24 wflow_publish(“analysis/EstimateCorEM2.Rmd”)
    html c3d87aa zouyuxin 2018-10-09 Build site.
    Rmd 8a7ee7c zouyuxin 2018-10-09 wflow_publish(c(“analysis/EstimateCorEM.Rmd”, “analysis/EstimateCorEM2.Rmd”, “analysis/EstimateCorEM3.Rmd”))
    html e5e7da7 zouyuxin 2018-10-09 Build site.
    Rmd 4c4955b zouyuxin 2018-10-09 wflow_publish(“analysis/EstimateCorEM2.Rmd”)
    html 3c9f55e zouyuxin 2018-10-09 Build site.
    Rmd 596f070 zouyuxin 2018-10-09 wflow_publish(“analysis/EstimateCorEM2.Rmd”)


library(mashr)
Loading required package: ashr
source('../code/generateDataV.R')
source('../code/summary.R')

We use EM algorithm to update \(\rho\).

B is the \(n\times R\) true value matrix. \(\mathbf{z}\) is a length n vector.

E step

\[ P(\hat{B},B, \mathbf{z}|\rho, \pi) = \prod_{j=1}^{J} \prod_{p=0}^{P}\left[\pi_{p}N(\hat{\mathbf{b}}_{j}; \mathbf{b}_{j}, \mathbf{V})N(\mathbf{b}_{i}; 0, \Sigma_{p})\right]^{\mathbb{I}(z_{i}=p)} \]

\[ \begin{align*} P(z_{j}=p, \mathbf{b}_{j}|\hat{\mathbf{b}}_{j}) &= \frac{P(z_{j}=p, \mathbf{b}_{j},\hat{\mathbf{b}}_{j})}{P(\hat{\mathbf{b}}_{j})} = \frac{P(\hat{\mathbf{b}}_{j}|\mathbf{b}_{j})P(\mathbf{b}_{j}|z_{j}=p) P(z_{j}=p)}{P(\hat{\mathbf{b}}_{j})} \\ &= \frac{\pi_{p} N_{R}(\hat{\mathbf{b}}_{j}; \mathbf{b}_{j},\mathbf{V})N_{R}(\mathbf{b}_{j}; \mathbf{0}, \Sigma_{p})}{\sum_{p'}\pi_{p'} N_{R}(\hat{\mathbf{b}}_{j}; \mathbf{0},\mathbf{V} + \Sigma_{p'})} \\ &= \frac{\pi_{p} N_{R}(\hat{\mathbf{b}}_{j}; \mathbf{0},\mathbf{V} + \Sigma_{p})}{\sum_{p'}\pi_{p'} N_{R}(\hat{\mathbf{b}}_{j}; \mathbf{0},\mathbf{V} + \Sigma_{p'})} \frac{N_{R}(\hat{\mathbf{b}}_{j}; \mathbf{b}_{j},\mathbf{V})N_{R}(\mathbf{b}_{j}; \mathbf{0}, \Sigma_{p})}{N_{R}(\hat{\mathbf{b}}_{j}; \mathbf{0},\mathbf{V} + \Sigma_{p})} \\ &= \gamma_{jp} P(\mathbf{b}_{j}|z_{j}=p, \hat{\mathbf{b}}_{j}) \\ &= P(z_{j}=p|\hat{\mathbf{b}}_{j}) P(\mathbf{b}_{j}|z_{j}=p, \hat{\mathbf{b}}_{j}) \end{align*} \]

\[ \mathbb{E}_{\mathbf{z}, \mathbf{B}|\hat{\mathbf{B}}}\log p(\hat{\mathbf{B}}, \mathbf{B}, \mathbf{z}) = \sum_{j=1}^{J} \sum_{p=1}^{P} \gamma_{jp} \left[\log \pi_{p} - \frac{1}{2}\log |\mathbf{V}| - \frac{1}{2}\mathbb{E}_{\mathbf{b}_{j}|\hat{\mathbf{b}}_{j}, z_{j}=p}\left[(\hat{\mathbf{b}}_{j}-\mathbf{b}_{j})^{T}\mathbf{V}^{-1}(\hat{\mathbf{b}}_{j}-\mathbf{b}_{j})\right] \\ - \frac{1}{2}\log |\Sigma_{p}| - \frac{1}{2}\mathbb{E}_{\mathbf{b}_{j}|\hat{\mathbf{b}}_{j}, z_{j}=p}\left[\mathbf{b}_{j}^{T}\Sigma_{p}^{-1}\mathbf{b}_{j} \right] \right] \]

\[ \begin{align*} f(\mathbf{V}) &= \sum_{j=1}^{J} \sum_{p=1}^{P} \gamma_{jp} \left[- \frac{1}{2}\log |\mathbf{V}| - \frac{1}{2}\mathbb{E}_{\mathbf{b}_{j}|\hat{\mathbf{b}}_{j}, z_{j}=p}\left[(\hat{\mathbf{b}}_{j}-\mathbf{b}_{j})^{T}\mathbf{V}^{-1}(\hat{\mathbf{b}}_{j}-\mathbf{b}_{j})\right]\right] \\ &= \sum_{j=1}^{J} \left[- \frac{1}{2}\log |\mathbf{V}| - \frac{1}{2}\mathbb{E}_{\mathbf{b}_{j}|\hat{\mathbf{b}}_{j}}\left[(\hat{\mathbf{b}}_{j}-\mathbf{b}_{j})^{T}\mathbf{V}^{-1}(\hat{\mathbf{b}}_{j}-\mathbf{b}_{j})\right]\right] \end{align*} \]

V has a specific form: \[ V = \left( \begin{matrix}1 & \rho \\ \rho & 1 \end{matrix} \right) \]

Let \(\mu_{j} = \mathbb{E}_{b_{j}|\hat{b}_{j}}(b_{j})\) \[ \begin{align*} \log N(\hat{b}_{j}; b_{j}, V) &= -\frac{1}{2}\log |V| - \frac{1}{2}(\hat{b}_{j}-b_{j})^{T}V^{-1}(\hat{b}_{j}-b_{j}) \\ &= -\frac{1}{2}\log |V| - \frac{1}{2}\hat{b}_{j}^{T}V^{-1}\hat{b}_{j} + \frac{1}{2}b_{j}^{T}V^{-1}\hat{b}_{j} + \frac{1}{2}\hat{b}_{j}^{T}V^{-1}b_{j} -\frac{1}{2}b_{j}^{T}V^{-1}b_{j} \\ \mathbb{E}_{b_{j}|\hat{b}_{j}} \log N(\hat{b}_{j}; b_{j}, V) &= -\frac{1}{2}\log |V| - \frac{1}{2}\hat{b}_{j}^{T}V^{-1}\hat{b}_{j} + \frac{1}{2}\mu_{j}^{T}V^{-1}\hat{b}_{j} + \frac{1}{2}\hat{b}_{j}^{T}V^{-1}\mu_{j} -\frac{1}{2}tr(V^{-1}\mathbb{E}_{b_{j}|\hat{b}_{j}}(b_{j}b_{j}^{T})) \end{align*} \]

\[ \begin{align*} \mathbb{E}_{b_{j}|\hat{b}_{j}} \log N(\hat{b}_{j}; b_{j}, V) &= -\frac{1}{2}\log |V| - \frac{1}{2}\hat{b}_{j}^{T}V^{-1}\hat{b}_{j} + \frac{1}{2}\mu_{j}^{T}V^{-1}\hat{b}_{j} + \frac{1}{2}\hat{b}_{j}^{T}V^{-1}\mu_{j} -\frac{1}{2}tr(V^{-1}\mathbb{E}_{b_{j}|\hat{b}_{j}}(b_{j}b_{j}^{T})) \\ &= -\frac{1}{2}\log(1-\rho^2) - \frac{1}{2(1-\rho^2)}\left(\hat{b}_{j1}^2 + \hat{b}_{j2}^2 - 2\hat{b}_{j1}\hat{b}_{j2}\rho -2\hat{b}_{j1} \mu_{j1} -2\hat{b}_{j2} \mu_{j2} + 2\hat{b}_{j2}\mu_{j1}\rho + 2\hat{b}_{j1}\mu_{j2}\rho + \mathbb{E}(b_{j1}^2|\hat{b}_{j}) + \mathbb{E}(b_{j2}^2|\hat{b}_{j}) - 2\rho\mathbb{E}(b_{j1}b_{j2}|\hat{b}_{j}) \right) \end{align*} \]

\[ f(\rho) = \sum_{j=1}^{J} -\frac{1}{2}\log(1-\rho^2) - \frac{1}{2(1-\rho^2)}\left(\hat{b}_{j1}^2 + \hat{b}_{j2}^2 - 2\hat{b}_{j1}\hat{b}_{j2}\rho -2\hat{b}_{j1} \mu_{j1} -2\hat{b}_{j2} \mu_{j2} + 2\hat{b}_{j2}\mu_{j1}\rho + 2\hat{b}_{j1}\mu_{j2}\rho + \mathbb{E}(b_{j1}^2|\hat{b}_{j}) + \mathbb{E}(b_{j2}^2|\hat{b}_{j}) - 2\rho\mathbb{E}(b_{j1}b_{j2}|\hat{b}_{j}) \right) \]

\[ \begin{align*} f(\rho)' &= \sum_{j=1}^{J} \frac{\rho}{1-\rho^2} -\frac{\rho}{(1-\rho^2)^2}\left( \hat{b}_{j1}^2 + \hat{b}_{j2}^2 -2\hat{b}_{j1} \mu_{j1} -2\hat{b}_{j2} \mu_{j2} + \mathbb{E}(b_{j1}^2|\hat{b}_{j}) + \mathbb{E}(b_{j2}^2|\hat{b}_{j}) \right) -\frac{\rho^2+1}{(1-\rho^2)^2}\left( -\hat{b}_{j1}\hat{b}_{j2} + \hat{b}_{j1}\mu_{j2} +\hat{b}_{j2}\mu_{j1} - \mathbb{E}(b_{j1}b_{j2}|\hat{b}_{j}) \right) = 0 \\ 0 &= \rho(1-\rho^2)n - \rho \sum_{j=1}^{n} \left( \hat{b}_{j1}^2 + \hat{b}_{j2}^2 -2\hat{b}_{j1} \mu_{j1} -2\hat{b}_{j2} \mu_{j2} + \mathbb{E}(b_{j1}^2|\hat{b}_{j}) + \mathbb{E}(b_{j2}^2|\hat{b}_{j}) \right) - (\rho^2 + 1) \sum_{j=1}^{n} \left( -\hat{b}_{j1}\hat{b}_{j2} + \hat{b}_{j1}\mu_{j2} +\hat{b}_{j2}\mu_{j1} - \mathbb{E}(b_{j1}b_{j2}|\hat{b}_{j}) \right) \\ 0 &=-n\rho^{3} - \rho^2 \sum_{j=1}^{n} \left( -\hat{b}_{j1}\hat{b}_{j2} + \hat{b}_{j1}\mu_{j2} +\hat{b}_{j2}\mu_{j1} - \mathbb{E}(b_{j1}b_{j2}|\hat{b}_{j}) \right) - \rho \sum_{j=1}^{n} \left( \hat{b}_{j1}^2 + \hat{b}_{j2}^2 -2\hat{b}_{j1} \mu_{j1} -2\hat{b}_{j2} \mu_{j2} + \mathbb{E}(b_{j1}^2|\hat{b}_{j}) + \mathbb{E}(b_{j2}^2|\hat{b}_{j}) -1\right) - \sum_{j=1}^{n} \left( -\hat{b}_{j1}\hat{b}_{j2} + \hat{b}_{j1}\mu_{j2} +\hat{b}_{j2}\mu_{j1} - \mathbb{E}(b_{j1}b_{j2}|\hat{b}_{j}) \right) \end{align*} \] The polynomial has either 1 or 3 real roots in (-1, 1).

Solution

Given \(\rho\), we estimate \(\boldsymbol{\pi}\) by max loglikelihood (convex problem)

Algorithm:

Input: X, Ulist, init_rho
Given rho, estimate pi by max loglikelihood (convex problem)
Compute loglikelihood
delta = 1
while delta > tol
  M step: update rho
  Given rho, estimate pi by max loglikelihood (convex problem)
  Compute loglikelihood
  Update delta
#' @param rho the off diagonal element of V, 2 by 2 correlation matrix
#' @param Ulist a list of covariance matrices, U_{k}
get_sigma <- function(rho, Ulist){
  V <- matrix(c(1,rho,rho,1), 2,2)
  lapply(Ulist, function(U) U + V)
}

penalty <- function(prior, pi_s){
  subset <- (prior != 1.0)
  sum((prior-1)[subset]*log(pi_s[subset]))
}

#' @title compute log likelihood
#' @param L log likelihoods,
#' where the (i,k)th entry is the log probability of observation i
#' given it came from component k of g
#' @param p the vector of mixture proportions
#' @param prior the weight for the penalty
compute.log.lik <- function(lL, p, prior){
  p = normalize(pmax(0,p))
  temp = log(exp(lL$loglik_matrix) %*% p)+lL$lfactors
  return(sum(temp) + penalty(prior, p))
  # return(sum(temp))
}

normalize <- function(x){
  x/sum(x)
}
mixture.M.rho.times <- function(X, Ulist, init_rho=0, tol=1e-5, prior = c('nullbiased', 'uniform')){
  times = length(init_rho)
  result = list()
  loglik = c()
  rho = c()
  time.t = c()
  converge.status = c()
  for(i in 1:times){
    out.time = system.time(result[[i]] <- mixture.M.rho(X, Ulist,
                                                      init_rho=init_rho[i],
                                                      prior=prior,
                                                      tol=tol))
    time.t = c(time.t, out.time['elapsed'])
    loglik = c(loglik, tail(result[[i]]$loglik, 1))
    rho = c(rho, result[[i]]$rho)
  }
  if(abs(max(loglik) - min(loglik)) < 1e-4){
    status = 'global'
  }else{
    status = 'local'
  }
  ind = which.max(loglik)
  return(list(result = result[[ind]], status = status, loglik = loglik, rho=rho, time = time.t))
}

mixture.M.rho <- function(X, Ulist, init_rho=0, tol=1e-5, prior = c('nullbiased', 'uniform')) {

  prior <- match.arg(prior)

  m.model = fit_mash(X, Ulist, rho = init_rho, prior=prior)
  pi_s = get_estimated_pi(m.model, dimension = 'all')
  prior.v <- mashr:::set_prior(length(pi_s), prior)

  # compute loglikelihood
  loglik <- c()
  loglik <- c(loglik, get_loglik(m.model)+penalty(prior.v, pi_s))
  delta.ll <- 1
  niter <- 0
  rho = init_rho

  while(delta.ll > tol){
    # max_rho
    rho <- E_rho(X, m.model)

    m.model = fit_mash(X, Ulist, rho, prior=prior)

    pi_s = get_estimated_pi(m.model, dimension = 'all')

    loglik <- c(loglik, get_loglik(m.model)+penalty(prior.v, pi_s))
    # Update delta
    delta.ll <- loglik[length(loglik)] - loglik[length(loglik)-1]
    niter <- niter + 1
  }

  return(list(pihat = normalize(pi_s), rho = rho, loglik=loglik))
}

E_rho <- function(X, m.model){
  n = nrow(X)
  post.m = m.model$result$PosteriorMean
  post.sec = plyr::laply(1:n, function(i) m.model$result$PosteriorCov[,,i] + tcrossprod(post.m[i,])) # nx2x2 array

  temp2 = -sum(X[,1]*X[,2]) + sum(X[,1]*post.m[,2]) + sum(X[,2]*post.m[,1]) - sum(post.sec[,1,2])
  temp1 = sum(X[,1]^2 + X[,2]^2) - 2*sum(X[,1]*post.m[,1]) - 2*sum(X[,2]*post.m[,2]) + sum(post.sec[,1,1] + post.sec[,2,2])

  rts = polyroot(c(temp2, temp1-n, temp2, n))

  # check complex number
  is.real = abs(Im(rts))<1e-12
  if(sum(is.real) == 1){
    return(Re(rts[is.real]))
  }else{
    print('3 real roots')
    return(Re(rts))
  }
}

fit_mash <- function(X, Ulist, rho, prior=c('nullbiased', 'uniform')){
  m.data = mashr::mash_set_data(Bhat=X, Shat=1, V = matrix(c(1, rho, rho, 1), 2, 2))
  m.model = mashr::mash(m.data, Ulist, prior=prior, verbose = FALSE, outputlevel = 3)
  return(m.model)
}

Data

set.seed(1)
n = 4000; p = 2
Sigma = matrix(c(1,0.5,0.5,1),p,p)
U0 = matrix(0,2,2)
U1 = U0; U1[1,1] = 1
U2 = U0; U2[2,2] = 1
U3 = matrix(1,2,2)
Utrue = list(U0=U0, U1=U1, U2=U2, U3=U3)
data = generate_data(n, p, Sigma, Utrue)
m.data = mash_set_data(data$Bhat, data$Shat)
U.c = cov_canonical(m.data)

result.mrho <- mixture.M.rho.times(m.data$Bhat, U.c)

The estimated \(\rho\) is 0.5060756. The running time is 65.74 seconds.

m.data.mrho = mash_set_data(data$Bhat, data$Shat, V = matrix(c(1,result.mrho$rho,result.mrho$rho,1),2,2))
U.c.mrho = cov_canonical(m.data.mrho)
m.mrho = mash(m.data.mrho, U.c, verbose= FALSE)
null.ind = which(apply(data$B,1,sum) == 0)

The log likelihood is -12302.54. There are 26 significant samples, 0 false positives. The RRMSE is 0.5820749.

Session information

sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS  10.14

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] mashr_0.2.18.0454 ashr_2.2-7       

loaded via a namespace (and not attached):
 [1] Rcpp_0.12.19      knitr_1.20        whisker_0.3-2    
 [4] magrittr_1.5      workflowr_1.1.1   REBayes_1.3      
 [7] MASS_7.3-50       pscl_1.5.2        doParallel_1.0.14
[10] SQUAREM_2017.10-1 lattice_0.20-35   foreach_1.4.4    
[13] plyr_1.8.4        stringr_1.3.1     tools_3.5.1      
[16] parallel_3.5.1    grid_3.5.1        R.oo_1.22.0      
[19] rmeta_3.0         git2r_0.23.0      htmltools_0.3.6  
[22] iterators_1.0.10  assertthat_0.2.0  abind_1.4-5      
[25] yaml_2.2.0        rprojroot_1.3-2   digest_0.6.18    
[28] Matrix_1.2-14     codetools_0.2-15  R.utils_2.7.0    
[31] evaluate_0.12     rmarkdown_1.10    stringi_1.2.4    
[34] compiler_3.5.1    Rmosek_8.0.69     backports_1.1.2  
[37] R.methodsS3_1.7.1 mvtnorm_1.0-8     truncnorm_1.0-8  

This reproducible R Markdown analysis was created with workflowr 1.1.1