Last updated: 2018-10-09
workflowr checks: (Click a bullet for more information) ✔ R Markdown file: up-to-date
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
✔ Environment: empty
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
✔ Seed:
set.seed(1)
The command set.seed(1)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
✔ Session information: recorded
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
✔ Repository version: 8a7ee7c
wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: analysis/.DS_Store
Ignored: analysis/.Rhistory
Ignored: analysis/include/.DS_Store
Ignored: code/.DS_Store
Ignored: data/.DS_Store
Ignored: docs/.DS_Store
Ignored: output/.DS_Store
Untracked files:
Untracked: analysis/Classify.Rmd
Untracked: analysis/EstimateCorEM3W2.Rmd
Untracked: analysis/EstimateCorMaxEMGD.Rmd
Untracked: analysis/EstimateCorMaxGD.Rmd
Untracked: analysis/EstimateCorOptimEM.Rmd
Untracked: analysis/EstimateCorPrior.Rmd
Untracked: analysis/EstimateCorSol.Rmd
Untracked: analysis/HierarchicalFlashSim.Rmd
Untracked: analysis/MashLowSignalGTEx4.Rmd
Untracked: analysis/Mash_GTEx.Rmd
Untracked: analysis/MeanAsh.Rmd
Untracked: analysis/OutlierDetection.Rmd
Untracked: analysis/OutlierDetection2.Rmd
Untracked: analysis/OutlierDetection3.Rmd
Untracked: analysis/OutlierDetection4.Rmd
Untracked: analysis/mash_missing_row.Rmd
Untracked: code/GTExNullModel.R
Untracked: code/MASH.result.1.rds
Untracked: code/MashClassify.R
Untracked: code/MashCorResult.R
Untracked: code/MashNULLCorResult.R
Untracked: code/MashSource.R
Untracked: code/Weight_plot.R
Untracked: code/addemV.R
Untracked: code/estimate_cor.R
Untracked: code/generateDataV.R
Untracked: code/johnprocess.R
Untracked: code/sim_mean_sig.R
Untracked: code/summary.R
Untracked: data/Blischak_et_al_2015/
Untracked: data/scale_data.rds
Untracked: docs/figure/Classify.Rmd/
Untracked: docs/figure/OutlierDetection.Rmd/
Untracked: docs/figure/OutlierDetection2.Rmd/
Untracked: docs/figure/OutlierDetection3.Rmd/
Untracked: docs/figure/Test.Rmd/
Untracked: docs/figure/mash_missing_whole_row_5.Rmd/
Untracked: docs/include/
Untracked: output/AddEMV/
Untracked: output/CovED_UKBio_strong.rds
Untracked: output/CovED_UKBio_strong_Z.rds
Untracked: output/Flash_UKBio_strong.rds
Untracked: output/GTExNULLres/
Untracked: output/GTEx_2.5_nullData.rds
Untracked: output/GTEx_2.5_nullModel.rds
Untracked: output/GTEx_2.5_nullPermData.rds
Untracked: output/GTEx_2.5_nullPermModel.rds
Untracked: output/GTEx_3.5_nullData.rds
Untracked: output/GTEx_3.5_nullModel.rds
Untracked: output/GTEx_3.5_nullPermData.rds
Untracked: output/GTEx_3.5_nullPermModel.rds
Untracked: output/GTEx_3_nullData.rds
Untracked: output/GTEx_3_nullModel.rds
Untracked: output/GTEx_3_nullPermData.rds
Untracked: output/GTEx_3_nullPermModel.rds
Untracked: output/GTEx_4.5_nullData.rds
Untracked: output/GTEx_4.5_nullModel.rds
Untracked: output/GTEx_4.5_nullPermData.rds
Untracked: output/GTEx_4.5_nullPermModel.rds
Untracked: output/GTEx_4_nullData.rds
Untracked: output/GTEx_4_nullModel.rds
Untracked: output/GTEx_4_nullPermData.rds
Untracked: output/GTEx_4_nullPermModel.rds
Untracked: output/MASH.10.em2.result.rds
Untracked: output/MASH.10.mle.result.rds
Untracked: output/MASHNULL.V.result.1.rds
Untracked: output/MASHNULL.V.result.10.rds
Untracked: output/MASHNULL.V.result.11.rds
Untracked: output/MASHNULL.V.result.12.rds
Untracked: output/MASHNULL.V.result.13.rds
Untracked: output/MASHNULL.V.result.14.rds
Untracked: output/MASHNULL.V.result.15.rds
Untracked: output/MASHNULL.V.result.16.rds
Untracked: output/MASHNULL.V.result.17.rds
Untracked: output/MASHNULL.V.result.18.rds
Untracked: output/MASHNULL.V.result.19.rds
Untracked: output/MASHNULL.V.result.2.rds
Untracked: output/MASHNULL.V.result.20.rds
Untracked: output/MASHNULL.V.result.3.rds
Untracked: output/MASHNULL.V.result.4.rds
Untracked: output/MASHNULL.V.result.5.rds
Untracked: output/MASHNULL.V.result.6.rds
Untracked: output/MASHNULL.V.result.7.rds
Untracked: output/MASHNULL.V.result.8.rds
Untracked: output/MASHNULL.V.result.9.rds
Untracked: output/MashCorSim--midway/
Untracked: output/Mash_EE_Cov_0_plusR1.rds
Untracked: output/UKBio_mash_model.rds
Untracked: output/result.em.rds
Unstaged changes:
Deleted: analysis/EstimateCorMax.Rmd
Modified: analysis/EstimateCorMaxEM2.Rmd
Deleted: analysis/EstimateCorMaxEMV.Rmd
Modified: analysis/EstimateCorMaxMV.Rmd
Modified: analysis/EstimateCorMaxMash.Rmd
Deleted: analysis/MashLowSignalGTEx3.5P.Rmd
Modified: analysis/Mash_UKBio.Rmd
Modified: analysis/mash_missing_samplesize.Rmd
Modified: output/Flash_T2_0.rds
Modified: output/Flash_T2_0_mclust.rds
Modified: output/Mash_model_0_plusR1.rds
Modified: output/PresiAddVarCol.rds
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 8a7ee7c | zouyuxin | 2018-10-09 | wflow_publish(c(“analysis/EstimateCorEM.Rmd”, “analysis/EstimateCorEM2.Rmd”, “analysis/EstimateCorEM3.Rmd”)) |
html | 4db8ea6 | zouyuxin | 2018-10-09 | Build site. |
Rmd | 7c1f5a9 | zouyuxin | 2018-10-09 | wflow_publish(“analysis/EstimateCorEM.Rmd”) |
html | f79c6e4 | zouyuxin | 2018-10-09 | Build site. |
Rmd | 7c9f970 | zouyuxin | 2018-10-09 | wflow_publish(“analysis/EstimateCorEM.Rmd”) |
html | 6c38c31 | zouyuxin | 2018-10-09 | Build site. |
Rmd | cd7ebf9 | zouyuxin | 2018-10-09 | wflow_publish(“analysis/EstimateCorEM.Rmd”) |
html | 597d99e | zouyuxin | 2018-09-20 | Build site. |
Rmd | 2c5aa17 | zouyuxin | 2018-09-20 | wflow_publish(“analysis/EstimateCorEM.Rmd”) |
library(mashr)
Loading required package: ashr
source('../code/generateDataV.R')
source('../code/summary.R')
\[ P(X,\mathbf{z}|\rho, \pi) = \prod_{i=1}^{n} \prod_{p=0}^{P}\left[\pi_{p}N(x_{i}; 0, \Omega_{p})\right]^{\mathbb{I}(z_{i}=p)} \prod_{p=0}^{P}\pi_{p}^{\lambda_{p}-1} \]
\[ \mathbb{E}_{\mathbf{z}|X} \log P(X,\mathbf{z}|\rho, \pi) = \sum_{i=1}^{n} \sum_{p=0}^{P} P(z_{i}=p|X)\left[ \log \pi_{p} + \log N(x_{i}; 0, \Omega_{p})\right] + \sum_{p=0}^{P} (\lambda_{p}-1)\log \pi_{p} \]
\[ \gamma_{z_{i}}(p) = P(z_{i}=p|X_{i}) = \frac{\pi_{p}N(x_{i}; 0, \Omega_{p})}{\sum_{p'=0}^{P}\pi_{p'}N(x_{i}; 0, \Omega_{p'})} \]
\(\pi\): \[ \sum_{i=1}^{n} \gamma_{z_{i}}(p) \frac{1}{\pi_{p}} + \frac{\lambda_{p}-1}{\pi_{p}} - \lambda = 0 \quad \rightarrow \pi_{p} = \frac{1}{\lambda} \left(\sum_{i=1}^{n} \gamma_{z_{i}}(p) + \lambda_{p}-1\right) \quad \lambda = n + \sum_{p=1}^{P}\lambda_{p} - P \]
\[ \hat{\pi}_{p} = \frac{\sum_{i=1}^{n} \gamma_{z_{i}}(p) + \lambda_{p} - 1 }{n + \sum_{p=1}^{P}\lambda_{p} - P } \]
\(\rho\): \[ \begin{align*} f(\rho) &= \sum_{i=1}^{n} \sum_{p=1}^{P} \gamma_{z_{i}}(p)\left[ -\frac{1}{2}\log (1-\phi_{p}^2)-\frac{1}{2(1-\phi_{p}^2)}\left[ \frac{x_{i}^2}{\omega_{p11}^2} + \frac{y_{i}^2}{\omega_{p22}^2} - \frac{2\phi_{p}x_{i}y_{i}}{\omega_{p11}\omega_{p22}}\right] \right]\\ f(\rho)' &= \sum_{i=1}^{n} \sum_{p=1}^{P} \gamma_{z_{i}}(p)\left[ \frac{\phi_{p}}{1-\phi_{p}^2}-\frac{\phi_{p}}{(1-\phi_{p}^2)^2}\left[ \frac{x_{i}^2}{\omega_{p11}^2} + \frac{y_{i}^2}{\omega_{p22}^2}\right] - \frac{\phi_{p}+1}{(1-\phi_{p}^2)^2}\frac{x_{i}y_{i}}{\omega_{p11}\omega_{p22}}\right]\frac{1}{\omega_{p11}\omega_{p22}} = 0 \end{align*} \] \(\phi_p = \frac{\rho + \sigma_{p12}}{\omega_{p11}\omega_{p22}}\), \(\phi_{p}\) is a function of \(\rho\).
Algorithm:
Input: X, Ulist, init_rho, init_pi
Compute loglikelihood
delta = 1
while delta > tol
E step: update z
M step: update pi, update rho
Compute loglikelihood
Update delta
#' @param rho the off diagonal element of V, 2 by 2 correlation matrix
#' @param Ulist a list of covariance matrices, U_{k}
get_sigma <- function(rho, Ulist){
V <- matrix(c(1,rho,rho,1), 2,2)
lapply(Ulist, function(U) U + V)
}
penalty <- function(prior, pi_s){
subset <- (prior != 1.0)
sum((prior-1)[subset]*log(pi_s[subset]))
}
#' @title compute log likelihood
#' @param L log likelihoods,
#' where the (i,k)th entry is the log probability of observation i
#' given it came from component k of g
#' @param p the vector of mixture proportions
#' @param prior the weight for the penalty
compute.log.lik <- function(lL, p, prior){
p = normalize(pmax(0,p))
temp = log(exp(lL$loglik_matrix) %*% p)+lL$lfactors
return(sum(temp) + penalty(prior, p))
# return(sum(temp))
}
normalize <- function(x){
x/sum(x)
}
mixture.EM.times <- function(X, Ulist, init_rho=0, init_pi=NULL, prior = c('nullbiased', 'uniform'), control = list()){
times = length(init_rho)
result = list()
loglik = c()
rho = c()
time.t = c()
converge.status = c()
for(i in 1:times){
out.time = system.time(result[[i]] <- mixture.EM(X, Ulist,
init_pi=init_pi,
init_rho=init_rho[i],
prior=prior,
control = control))
time.t = c(time.t, out.time['elapsed'])
loglik = c(loglik, result[[i]]$loglik)
rho = c(rho, result[[i]]$rhohat)
converge.status = c(converge.status, result[[i]]$converged)
}
if(abs(max(loglik) - min(loglik)) < 1e-4){
status = 'global'
}else{
status = 'local'
}
ind = which.max(loglik)
return(list(result = result[[ind]], status = status, loglik = loglik, rho=rho, time = time.t, converge.status = converge.status))
}
mixture.EM <- function(X, Ulist, init_rho=0, init_pi = NULL, prior = c('nullbiased', 'uniform'), control = list()) {
prior = match.arg(prior)
prior <- mashr:::set_prior(length(Ulist), prior)
k = length(Ulist)
if (is.null(init_pi)){
init_pi <- rep(1/k,k)
}
control = ashr:::set_control_squarem(control,nrow(X))
res = SQUAREM::squarem(par=c(init_pi, init_rho),fixptfn=fixpoint_EM, objfn=negpenloglik,X=X, Ulist=Ulist, prior=prior, control=control)
return(list(pihat = normalize(pmax(0,head(res$par, -1))), rhohat = tail(res$par, 1), loglik=-res$value.objfn, niter = res$iter, converged=res$convergence, control=control))
}
fixpoint_EM = function(par, X, Ulist, prior){
rho = tail(par,1)
pi_s = head(par, -1)
pi_s = normalize(pmax(0,pi_s)) #avoid occasional problems with negative pis due to rounding
# compute L
Sigma <- get_sigma(rho, Ulist)
L <- t(plyr::laply(Sigma,function(U){mvtnorm::dmvnorm(x=X,sigma=U)}))
# E
m = t(pi_s * t(L)) # matrix_lik is n by k; so this is also n by k
m.rowsum = rowSums(m)
classprob = m/m.rowsum #an n by k matrix
# M
pinew = normalize(colSums(classprob) + prior - 1)
rhonew = optimize(EMloglikelihood, interval = c(-1,1), maximum = TRUE, X = X, Ulist = Ulist, z = classprob)$maximum
return(c(pinew,rhonew))
}
EMloglikelihood = function(rho, X, Ulist, z){
Sigma = get_sigma(rho, Ulist)
L = t(plyr::laply(Sigma,function(U){mvtnorm::dmvnorm(x=X,sigma=U, log=TRUE)}))
sum(L * z)
}
negpenloglik = function(par, X, Ulist, prior){
Sigma <- get_sigma(tail(par,1), Ulist)
lL <- t(plyr::laply(Sigma,function(U){mvtnorm::dmvnorm(x=X,sigma=U, log=TRUE)}))
lfactors <- apply(lL,1,max)
matrix_llik <- lL - lfactors
lL = list(loglik_matrix = matrix_llik,
lfactors = lfactors)
ll <- compute.log.lik(lL, head(par, -1), prior)
return(-ll)
}
\[ \hat{\beta}|\beta \sim N_{2}(\hat{\beta}; \beta, \left(\begin{matrix} 1 & 0.5 \\ 0.5 & 1 \end{matrix}\right)) \]
\[ \beta \sim \frac{1}{4}\delta_{0} + \frac{1}{4}N_{2}(0, \left(\begin{matrix} 1 & 0 \\ 0 & 0 \end{matrix}\right)) + \frac{1}{4}N_{2}(0, \left(\begin{matrix} 0 & 0 \\ 0 & 1 \end{matrix}\right)) + \frac{1}{4}N_{2}(0, \left(\begin{matrix} 1 & 1 \\ 1 & 1 \end{matrix}\right)) \]
n = 4000
set.seed(1)
n = 4000; p = 2
Sigma = matrix(c(1,0.5,0.5,1),p,p)
U0 = matrix(0,2,2)
U1 = U0; U1[1,1] = 1
U2 = U0; U2[2,2] = 1
U3 = matrix(1,2,2)
Utrue = list(U0=U0, U1=U1, U2=U2, U3=U3)
data = generate_data(n, p, Sigma, Utrue)
m.data = mash_set_data(data$Bhat, data$Shat)
U.c = cov_canonical(m.data)
grid = mashr:::autoselect_grid(m.data, sqrt(2))
Ulist = mashr:::normalize_Ulist(U.c)
xUlist = mashr:::expand_cov(Ulist,grid,usepointmass = TRUE)
result.em <- mixture.EM.times(m.data$Bhat, xUlist)
saveRDS(result.em, '../output/result.em.rds')
result.em = readRDS('../output/result.em.rds')
The estimated \(\rho\) is 0.5066755. The running time is 739.486 seconds.
m.data.em = mash_set_data(data$Bhat, data$Shat, V = matrix(c(1,result.em$rho,result.em$rho,1),2,2))
U.c = cov_canonical(m.data.em)
m.em = mash(m.data.em, U.c, verbose= FALSE)
null.ind = which(apply(data$B,1,sum) == 0)
The log likelihood is -12302.54. There are 26 significant samples, 0 false positives. The RRMSE is 0.582108.
sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS High Sierra 10.13.6
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] mashr_0.2-15 ashr_2.2-14
loaded via a namespace (and not attached):
[1] Rcpp_0.12.19 knitr_1.20 whisker_0.3-2
[4] magrittr_1.5 workflowr_1.1.1 REBayes_1.3
[7] MASS_7.3-50 pscl_1.5.2 doParallel_1.0.14
[10] SQUAREM_2017.10-1 lattice_0.20-35 foreach_1.4.4
[13] plyr_1.8.4 stringr_1.3.1 tools_3.5.1
[16] parallel_3.5.1 grid_3.5.1 R.oo_1.22.0
[19] rmeta_3.0 git2r_0.23.0 htmltools_0.3.6
[22] iterators_1.0.10 assertthat_0.2.0 abind_1.4-5
[25] yaml_2.2.0 rprojroot_1.3-2 digest_0.6.15
[28] Matrix_1.2-14 codetools_0.2-15 R.utils_2.6.0
[31] evaluate_0.11 rmarkdown_1.10 stringi_1.2.4
[34] compiler_3.5.1 Rmosek_8.0.69 backports_1.1.2
[37] R.methodsS3_1.7.1 mvtnorm_1.0-8 truncnorm_1.0-8
This reproducible R Markdown analysis was created with workflowr 1.1.1