Last updated: 2018-10-11

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(20180529)

    The command set.seed(20180529) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: 3844642

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .Rhistory
        Ignored:    .Rproj.user/
        Ignored:    analysis/.Rhistory
        Ignored:    docs/.DS_Store
        Ignored:    docs/figure/Test.Rmd/
    
    Unstaged changes:
        Modified:   analysis/susie_z_imple.Rmd
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    Rmd 3844642 zouyuxin 2018-10-11 wflow_publish(“analysis/susieR_summary_stat_imple.Rmd”)
    html 73cf69a zouyuxin 2018-10-06 Build site.
    Rmd bf2163c zouyuxin 2018-10-06 wflow_publish(“analysis/susieR_summary_stat_imple.Rmd”)
    html cd773c5 zouyuxin 2018-09-18 Build site.
    Rmd 6343c18 zouyuxin 2018-09-18 wflow_publish(“analysis/susieR_summary_stat_imple.Rmd”)
    html e93e5a5 zouyuxin 2018-09-18 Build site.
    Rmd 00860df zouyuxin 2018-09-18 wflow_publish(“analysis/susieR_summary_stat_imple.Rmd”)


We illustrate the methods in SER model. It’s straight forward to implement in the general susie model.

\[ \begin{align*} \mathbf{y}_c &= X_c \boldsymbol{\beta} + \boldsymbol{\epsilon} \quad \boldsymbol{\epsilon}\sim N_{n}(0, \frac{1}{\tau}I) \\ \boldsymbol{\beta} &= \boldsymbol{\gamma} \beta \\ \boldsymbol{\gamma} &\sim Multinomial(1,\boldsymbol{\pi}) \\ \beta &\sim N(0, \frac{1}{\tau_{0}}) \end{align*} \]

where \(\mathbf{y}_c\) and \(X_c\) are centered. By default we set \(\frac{1}{\tau} = var(\mathbf{y})\), \(\frac{1}{\tau_{0}} = \sigma_{\beta}^{2} var(\mathbf{y})\).

We use \(\mathbf{y}\) and \(X\) to denote the original data. \(\mathbf{y}_c\) and \(X_c\) denote the centered data. \(\mathbf{y}_{cs}\) and \(X_{cs}\) denote the centered and scaled data.

Data:

library(susieR)
set.seed(1)
n = 800
p = 1000
beta = rep(0,p)
beta[1] = 1
beta[50] = 1
beta[300] = 1
beta[400] = 1
X = matrix(rnorm(n*p),nrow=n,ncol=p)
y = c(X %*% beta + rnorm(n))

X.cs = susieR:::safe_colScale(X, center=TRUE, scale=TRUE)
X.c = susieR:::safe_colScale(X, center=TRUE, scale=FALSE)
X.s = susieR:::safe_colScale(X, center=FALSE, scale=TRUE)

The summary statistics \(\hat{\beta}_{j}\) comes from the \(X_{cs}\)

Know \(\hat{\beta}_{j}\), \(X_c^{T}X_c\), \(var(\mathbf{y})\), n

The \(\hat{\beta}_{j}\) is from \[ \mathbf{y} = \beta_{0j} + \frac{\mathbf{x}_{j}}{\alpha_{j}}\beta_{j} + \epsilon_{j} \] \(\alpha_{j}\) is the scaling parameter for \(\mathbf{x}_{j}\) (\(\alpha_{j} = sd(\mathbf{x}_{j}\)).

\[ \hat{\beta}_{j} = \frac{\alpha_{j}^{-1} (\mathbf{x}_{j}-\bar{\mathbf{x}}_{j})^{T}(\mathbf{y}-\bar{\mathbf{y}})}{\alpha_{j}^{-2}(\mathbf{x}_{j}-\bar{\mathbf{x}}_{j})^{T}(\mathbf{x}_{j}-\bar{\mathbf{x}}_{j})} = \frac{\alpha_{j}^{-1} (\mathbf{x}_{j}-\bar{\mathbf{x}}_{j})^{T}(\mathbf{y}-\bar{\mathbf{y}})}{n-1} \]

We know the correlation matrix R from the \(X_{c}^{T}X_{c}\). The \(X_{cs}^{T}X_{cs} = (n-1) R\). \(X_{cs}\mathbf{y}_{c} = (n-1) \hat{\boldsymbol{\beta}}\). Using \(X_{cs}^{T}X_{cs}\) and \(X_{cs}\mathbf{y}_{c}\) in susie_ss is equivalent to fit susie model with individual level data centered and scaled. \[ \begin{align*} \mathbf{y}_c &= X_{cs} \boldsymbol{\beta} + \boldsymbol{\epsilon} \quad \boldsymbol{\epsilon}\sim N_{n}(0, \frac{1}{\tau}I) \\ \boldsymbol{\beta} &= \boldsymbol{\gamma} \beta \\ \boldsymbol{\gamma} &\sim Multinomial(1,\boldsymbol{\pi}) \\ \beta &\sim N(0, \frac{1}{\tau_{0}}) \end{align*} \]

res0 = susieR::susie(X,y, estimate_residual_variance = FALSE, estimate_prior_variance = FALSE, max_iter = 3)
# summary stat
bhat.cs = numeric(p)
se.cs = numeric(p)
sigmahat.cs = numeric(p)
for(j in 1:p){
  m = summary(lm(y~X.s[,j]))
  bhat.cs[j] = m$coefficients[2,1]
  se.cs[j] = m$coefficients[2,2]
  sigmahat.cs[j] = m$sigma
}

X.ctX.c = t(X.c) %*% X.c
#-------------------------------#
R = cov2cor(X.ctX.c)
X.cstX.cs = (n-1)*R
X.csty.c = (n-1)* bhat.cs
res1 = susieR::susie_ss(X.cstX.cs, X.csty.c, var_y = var(y), n = n,
                        estimate_prior_variance = FALSE, max_iter = 3)

all.equal(res0$alpha, res1$alpha)
[1] TRUE

OR

\(\alpha_{j}^{2} = \frac{\mathbf{x}_{cj}^{T}\mathbf{x}_{cj}}{n-1}\)

\[ X_{c}^{T}\mathbf{y}_{c} = (n-1) \boldsymbol{\alpha}\hat{\boldsymbol{\beta}} = \sqrt{(n-1)\mathbf{x}_{cj}^{T}\mathbf{x}_{cj}} \hat{\boldsymbol{\beta}} \] Using \(X_{c}^{T}X_{c}\) and \(X_{c}\mathbf{y}_{c}\) in susie_ss is equivalent to fit susie model with centered individual level data centered.

\[ \begin{align*} \mathbf{y}_c &= X_{c} \boldsymbol{\beta} + \boldsymbol{\epsilon} \quad \boldsymbol{\epsilon}\sim N_{n}(0, \frac{1}{\tau}I) \\ \boldsymbol{\beta} &= \boldsymbol{\gamma} \beta \\ \boldsymbol{\gamma} &\sim Multinomial(1,\boldsymbol{\pi}) \\ \beta &\sim N(0, \frac{1}{\tau_{0}}) \end{align*} \]

res2 = susie(X, y, standardize = FALSE, estimate_residual_variance = FALSE, max_iter = 3)
X.cty.c = sqrt((n-1)*diag(X.ctX.c)) * bhat.cs

res3 = susie_ss(X.ctX.c, X.cty.c, var_y = var(y), n= n, max_iter = 3, standardize = FALSE)
all.equal(res2$alpha, res3$alpha)
[1] TRUE

Know \(\hat{\beta}_{j}\), \((n-1)R = X_{cs}^{T}X_{cs}\), \(var(\mathbf{y})\), n

Similarly as above to have centered and scaled individual level data.

The summary statistics \(\hat{\beta}_{j}\) comes from the unscaled \(X_{c}\)

Know \(\hat{\beta}_{j}\), \(X_c^{T}X_c\), \(var(\mathbf{y})\), n

The \(\hat{\beta}_{j}\) is from \[ \mathbf{y} = \beta_{0j} + \mathbf{x}_{j}\beta_{j} + \epsilon_{j} \] \(\alpha_{j}\) is the scaling parameter for \(\mathbf{x}_{j}\) (\(\alpha_{j} = sd(\mathbf{x}_{j}\)).

\[ \hat{\beta}_{j} = \frac{ (\mathbf{x}_{j}-\bar{\mathbf{x}}_{j})^{T}(\mathbf{y}-\bar{\mathbf{y}})}{(\mathbf{x}_{j}-\bar{\mathbf{x}}_{j})^{T}(\mathbf{x}_{j}-\bar{\mathbf{x}}_{j})} \]

Using the diagonal element of \(X_c^{T}X_{c}\), we know \(X_{c}^{T}\mathbf{y}_{c}\). Using \(X_{c}^{T}X_{c}\) and \(X_{c}\mathbf{y}_{c}\) in susie_ss is equivalent to fit susie model with centered individual level data. \[ \begin{align*} \mathbf{y}_c &= X_{c} \boldsymbol{\beta} + \boldsymbol{\epsilon} \quad \boldsymbol{\epsilon}\sim N_{n}(0, \frac{1}{\tau}I) \\ \boldsymbol{\beta} &= \boldsymbol{\gamma} \beta \\ \boldsymbol{\gamma} &\sim Multinomial(1,\boldsymbol{\pi}) \\ \beta &\sim N(0, \frac{1}{\tau_{0}}) \end{align*} \]

# summary stat
bhat.c = numeric(p)
se.c = numeric(p)
sigmahat.c = numeric(p)
for(j in 1:p){
  m = summary(lm(y~X[,j]))
  bhat.c[j] = m$coefficients[2,1]
  se.c[j] = m$coefficients[2,2]
  sigmahat.c[j] = m$sigma
}

X.ctX.c = t(X.c) %*% X.c
#-------------------------------#
X.cty.c = diag(X.ctX.c)* bhat.c
res3 = susieR::susie_ss(X.ctX.c, X.cty.c, var_y = var(y), n = n,
                        estimate_prior_variance = FALSE, max_iter = 3, standardize = FALSE)

all.equal(res2$alpha, res3$alpha)
[1] TRUE

Or,

\(\alpha_{j}^2 = \frac{\mathbf{x}_{cj}^{T}\mathbf{x}_{cj}}{n-1}\), \(\Lambda = diag(\sqrt{\mathbf{x}_{cj}^{T}\mathbf{x}_{cj}})\) \[ X_{cs}^{T}\mathbf{y}_{c} = diag(\alpha^{-1})\Lambda^2\hat{\boldsymbol{\beta}} = \sqrt{n-1}\Lambda\hat{\boldsymbol{\beta}} \] We know the correlation matrix R from the \(X_{c}^{T}X_{c}\). The \(X_{cs}^{T}X_{cs} = (n-1) R\). Using \(X_{cs}^{T}X_{cs}\) and \(X_{cs}\mathbf{y}_{c}\) in susie_ss is equivalent to fit susie model with centered and scaled individual level data. \[ \begin{align*} \mathbf{y}_c &= X_{cs} \boldsymbol{\beta} + \boldsymbol{\epsilon} \quad \boldsymbol{\epsilon}\sim N_{n}(0, \frac{1}{\tau}I) \\ \boldsymbol{\beta} &= \boldsymbol{\gamma} \beta \\ \boldsymbol{\gamma} &\sim Multinomial(1,\boldsymbol{\pi}) \\ \beta &\sim N(0, \frac{1}{\tau_{0}}) \end{align*} \]

X.csty.c = sqrt(n-1) * sqrt(diag(X.ctX.c)) * bhat.c
res4 = susie_ss(X.cstX.cs, X.csty.c, var_y = var(y), n = n, max_iter = 3)
all.equal(res0$alpha, res4$alpha)
[1] TRUE

Know \(\hat{\beta}_{j}\), the standard errors of effect size (\(\hat{s}_{j}\)), \((n-1)R = X_{cs}^{T}X_{cs}\), \(var(\mathbf{y})\), n

\[ \hat{\beta}_{j} = \frac{ \mathbf{x}_{cj}^{T}\mathbf{y}_{c}}{\mathbf{x}_{cj}^{T}\mathbf{x}_{cj}} \] \[ \hat{s}_{j}^2 = \frac{(\mathbf{y}_{c} - \mathbf{x}_{cj}\hat{\beta}_{j})^{T}(\mathbf{y}_{c} - \mathbf{x}_{cj}\hat{\beta}_{j})}{(n-2)\mathbf{x}_{cj}^{T}\mathbf{x}_{cj}} = \frac{(n-1)var(\mathbf{y}) - (\mathbf{x}_{cj}^{T}\mathbf{x}_{cj})^{-1}(\mathbf{x}_{cj}^{T}\mathbf{y}_{c})^2}{(n-2)\mathbf{x}_{cj}^{T}\mathbf{x}_{cj}} \]

We can compute \(\Lambda = diag(\sqrt{\mathbf{x}_{cj}^{T}\mathbf{x}_{cj}})\).

\[ \mathbf{x}_{cj}^{T}\mathbf{x}_{cj} = \frac{n*var(\mathbf{y})}{\hat{s}_{j}^2(n-2)+\hat{\beta}_{j}^2} \quad \mathbf{x}_{cj}^{T}\mathbf{y} = \hat{\beta}_{j}\mathbf{x}_{cj}^{T}\mathbf{x}_{cj} \] Using \(X_{c}^{T}X_{c}\) and \(X_{c}\mathbf{y}_{c}\) in susie_ss is equivalent to fit susie model with centered individual level data. \[ \begin{align*} \mathbf{y}_c &= X_{c} \boldsymbol{\beta} + \boldsymbol{\epsilon} \quad \boldsymbol{\epsilon}\sim N_{n}(0, \frac{1}{\tau}I) \\ \boldsymbol{\beta} &= \boldsymbol{\gamma} \beta \\ \boldsymbol{\gamma} &\sim Multinomial(1,\boldsymbol{\pi}) \\ \beta &\sim N(0, \frac{1}{\tau_{0}}) \end{align*} \]

XtXbetase = (n-1)*var(y)/(se.c^2 * (n-2) + bhat.c^2)
Xtybetase = bhat.c * XtXbetase
XtXbetase = t(R * sqrt(XtXbetase)) * sqrt(XtXbetase)

res4 = susieR::susie_ss(XtXbetase,Xtybetase,var_y = var(y), n = n, max_iter = 3, standardize = FALSE)
all.equal(res2$alpha, res4$alpha)
[1] TRUE

To fit the model with scaled X, we can transfer \(\hat{\beta}_{j}\), \(\hat{s}_{j}\) into z scores.

Know z scores

With z scores, we don’t care whether the summary statisitcs are from the scaled X or unscaled X.

\[ \hat{z}_{j} = \frac{\hat{\beta}_{j}}{\hat{s}_{j}} = \frac{\mathbf{x}_{cj}^{T}\mathbf{y}_{c}}{\hat{\sigma}_{j}\sqrt{\mathbf{x}_{cj}^{T}\mathbf{x}_{cj}}} = \frac{\frac{1}{\alpha_{j}}\mathbf{x}_{cj}^{T}\mathbf{y}_{c}}{\hat{\sigma}_{j}\sqrt{\frac{\mathbf{x}_{cj}}{\alpha_{j}}^{T}\frac{\mathbf{x}_{cj}}{\alpha_{j}}}} \]

\(\hat{\Sigma} = diag(\hat{\sigma}_{1}^2, \cdots, \hat{\sigma}_{p}^2)\)

\[ R_{j}^2 = \frac{\hat{z}_{j}^2}{\hat{z}_{j}^2+n-2} \]

Then \[ 1-R_{j}^{2} = \frac{RSS}{SST} = \frac{\hat{\sigma}_{j}^2(n-2)}{\mathbf{y}_{c}^{T}\mathbf{y}_{c}} \quad \hat{\sigma}_{j}^2 = \frac{\mathbf{y}_{c}^{T}\mathbf{y}_{c}(1-R_{j}^2)}{n-2} \]

Know \(X_{c}^{T}X_{c}\)

\(\Lambda = diag(\sqrt{\mathbf{x}_{cj}^{T}\mathbf{x}_{cj}}) = \sqrt{diag(X_{c}^{T}X_{c})}\) \[ X_{c}^{T}\mathbf{y}_{c} = \hat{\Sigma}^{1/2}\Lambda\hat{\mathbf{z}} \] Using \(X_{c}^{T}X_{c}\) and \(X_{c}\mathbf{y}_{c}\) in susie_ss is equivalent to fit susie model with centered individual level data. \[ \begin{align*} \mathbf{y}_c &= X_{c} \boldsymbol{\beta} + \boldsymbol{\epsilon} \quad \boldsymbol{\epsilon}\sim N_{n}(0, \frac{1}{\tau}I) \\ \boldsymbol{\beta} &= \boldsymbol{\gamma} \beta \\ \boldsymbol{\gamma} &\sim Multinomial(1,\boldsymbol{\pi}) \\ \beta &\sim N(0, \frac{1}{\tau_{0}}) \end{align*} \]

z = bhat.c/se.c
R2 = z^2/(z^2 + n-2)
sigma2 = var(y)*(n-1)*(1-R2)/(n-2)
Xtyz = sigma2^(0.5) * sqrt(diag(X.ctX.c)) * z

res5 = susieR::susie_ss(X.ctX.c,Xtyz,var_y = var(y), n = n, max_iter = 3, standardize = FALSE)
all.equal(res2$alpha, res5$alpha)
[1] TRUE

Or change \(X_{c}^{T}X_{c}\) into R, fit model with centered and scaled individual level data.

Know \((n-1)R = X_{cs}^{T}X_{cs}\)

\(\Lambda = diag(\sqrt{\mathbf{x}_{cj}^{T}\mathbf{x}_{cj}}) = diag(\sqrt{n-1})\) \[ X_{cs}^{T}\mathbf{y}_{c} = \hat{\Sigma}^{1/2}\Lambda\hat{\mathbf{z}} \] Using \(X_{cs}^{T}X_{cs}\) and \(X_{cs}\mathbf{y}_{c}\) in susie_ss is equivalent to fit susie model with centered and scaled individual level data. \[ \begin{align*} \mathbf{y}_c &= X_{cs} \boldsymbol{\beta} + \boldsymbol{\epsilon} \quad \boldsymbol{\epsilon}\sim N_{n}(0, \frac{1}{\tau}I) \\ \boldsymbol{\beta} &= \boldsymbol{\gamma} \beta \\ \boldsymbol{\gamma} &\sim Multinomial(1,\boldsymbol{\pi}) \\ \beta &\sim N(0, \frac{1}{\tau_{0}}) \end{align*} \]

z = bhat.c/se.c
R2 = z^2/(z^2 + n-2)
sigma2 = var(y)*(n-1)*(1-R2)/(n-2)
Xtyz = sigma2^(0.5) * sqrt(diag(X.cstX.cs)) * z

res6 = susieR::susie_ss(X.cstX.cs,Xtyz,var_y = var(y), n = n, max_iter = 3, standardize = FALSE)
all.equal(res0$alpha, res6$alpha)
[1] TRUE

Don’t know \(var(y)\)

\[ 1-R_{j}^{2} = \frac{RSS}{SST} = \frac{\hat{\sigma}_{j}^2(n-2)}{\mathbf{y}_{c}^{T}\mathbf{y}_{c}} \quad \hat{\sigma}_{j}^2 = \frac{c(n-1)(1-R_{j}^2)}{n-2} \] where \(\mathbf{y}_{c}^{T}\mathbf{y}_{c} = (n-1)c\).

Define \[ \tilde{\sigma}_{j}^2 = \frac{(n-1)(1-R_{j}^2)}{n-2} = \frac{1}{c} \hat{\sigma}_{j}^2 \] \(\tilde{\Sigma} = diag(\tilde{\sigma}_{1}^2, \cdots, \tilde{\sigma}_{p}^2) = \frac{1}{c}\hat{\Sigma}\)

\(X_{.}\) could be \(X_{c}\) or \(X_{cs}\) \[ X_{.}^{T}\mathbf{y} = \hat{\Sigma}^{1/2} \Lambda \hat{\mathbf{z}} = \sqrt{c} \Lambda\tilde{\Sigma}^{1/2} \hat{\mathbf{z}} \\ X_{.}^{T}\frac{1}{\sqrt{c}}\mathbf{y} = \Lambda\tilde{\Sigma}^{1/2} \hat{\mathbf{z}} \]

This is equivalent to \[ \begin{align*} \frac{1}{\sqrt{c}}\mathbf{y}_{c} &= X_{.} \boldsymbol{\beta} + \boldsymbol{\epsilon} \quad \boldsymbol{\epsilon}\sim N_{n}(0, I) \\ \boldsymbol{\beta} &= \boldsymbol{\gamma} \beta \quad \boldsymbol{\gamma} \sim Multinomial(1,\boldsymbol{\pi}) \quad \beta \sim N(0, \sigma_{\beta}^2) \end{align*} \]

z = bhat.c/se.c
R2 = z^2/(z^2 + n-2)
sigma2 = (n-1)*(1-R2)/(n-2)
Xtyz = sigma2^(0.5) * sqrt(diag(X.cstX.cs)) * z

res7 = susieR::susie_ss(X.cstX.cs,Xtyz,var_y = 1, n = n, max_iter = 3)
all.equal(res0$alpha, res7$alpha)
[1] TRUE

Simulated sata

dat = readRDS(system.file("datafiles", "N3finemapping.rds", package = "susieR"))

# the 3 “true” signals in the first data-set
b = dat$data$true_coef[,1]
plot(b, pch=16, ylab='effect size')

Expand here to see past versions of unnamed-chunk-12-1.png:
Version Author Date
cd773c5 zouyuxin 2018-09-18

which(b != 0) ## 403 653 773
[1] 403 653 773
z_scores = dat$sumstats[1,,] / dat$sumstats[2,,]
z_scores = z_scores[,1]
susie_plot(z_scores, y = "z", b=b)

Expand here to see past versions of unnamed-chunk-12-2.png:
Version Author Date
73cf69a zouyuxin 2018-10-06
cd773c5 zouyuxin 2018-09-18

SuSiE model with individual level data

fitted = susie(dat$data$X, dat$data$Y[,1],
               L=5,
               estimate_residual_variance = FALSE, 
               estimate_prior_variance = FALSE,
               scaled_prior_variance = 0.1, 
               tol=1e-3)
sets = susie_get_CS(fitted)
pip = susieR::susie_get_PIP(fitted, sets$cs_index)
susieR::susie_plot(fitted, y='PIP', b=b, main = paste('SuSiE, ', length(sets$cs), 'CS identified'))

Expand here to see past versions of unnamed-chunk-13-1.png:
Version Author Date
73cf69a zouyuxin 2018-10-06
cd773c5 zouyuxin 2018-09-18

SuSiE model using summary stat

n = nrow(dat$data$X)
R = cor(dat$data$X)

R2 = z_scores^2/(z_scores^2 + n-2)
sigma2 = (n-1)*(1-R2)/(n-2)
sXtXz = (n-1)*R
sXtyz = sqrt(n-1) * sqrt(sigma2) * z_scores

fitted_ss = susie_ss(sXtXz, sXtyz,
               L=5, var_y = 1, n = n,
               residual_variance = 1,
               estimate_prior_variance = FALSE,
               scaled_prior_variance = 0.1, 
               tol=1e-3, max_iter = 6)

all.equal(fitted$alpha, fitted_ss$alpha)
[1] TRUE
sets_ss = susie_get_CS(fitted_ss)
pip_ss = susieR::susie_get_PIP(fitted, sets_ss$cs_index)
susieR::susie_plot(fitted_ss, y='PIP', b=b, main = paste('SuSiE, ', length(sets_ss$cs), 'CS identified'))

Expand here to see past versions of unnamed-chunk-14-1.png:
Version Author Date
73cf69a zouyuxin 2018-10-06
cd773c5 zouyuxin 2018-09-18

Session information

sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS High Sierra 10.13.6

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] susieR_0.4.30.0332

loaded via a namespace (and not attached):
 [1] workflowr_1.1.1    Rcpp_0.12.19       matrixStats_0.54.0
 [4] lattice_0.20-35    digest_0.6.15      rprojroot_1.3-2   
 [7] R.methodsS3_1.7.1  grid_3.5.1         backports_1.1.2   
[10] git2r_0.23.0       magrittr_1.5       evaluate_0.11     
[13] stringi_1.2.4      whisker_0.3-2      R.oo_1.22.0       
[16] R.utils_2.6.0      Matrix_1.2-14      rmarkdown_1.10    
[19] tools_3.5.1        stringr_1.3.1      yaml_2.2.0        
[22] compiler_3.5.1     htmltools_0.3.6    knitr_1.20        

This reproducible R Markdown analysis was created with workflowr 1.1.1