Last updated: 2018-09-05
workflowr checks: (Click a bullet for more information) ✔ R Markdown file: up-to-date
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
✔ Environment: empty
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
✔ Seed:
set.seed(20180529)
The command set.seed(20180529)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
✔ Session information: recorded
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
✔ Repository version: ecdacb8
wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: analysis/.Rhistory
Ignored: docs/.DS_Store
Ignored: docs/figure/
Unstaged changes:
Modified: analysis/_site.yml
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Variational Bayes is a particular variational method which aims to find some approximate joint distribution \(q(\beta; \theta)\) over hidden variables \(\beta\) to approximate the true joint \(p(\beta)\), and define the ‘closeness’ as the KL divergence \(KL\left[q(\beta; \theta)|| p(\beta)\right]\). The mean field form of VB assumes that q factorises into single-variable factors, \(q(\beta) = \prod_{i} q_{i}(\beta_{i}|\theta_{i})\).
We wish to find a set of distributions \(\{q_{i}(\beta_{i};\theta_{i})\}\) to minimize the KL divergence: \[ KL\left[ q(\beta) \| p(\beta|D) \right] = \int q(\beta) \log \frac{q(\beta)}{p(\beta|D)} d\beta \]
\[ q(\beta) = \prod_{i} q_{i}(\beta_{i}|\theta_{i}) \] subject to the normalization constraints: \[ \forall i \int q(\beta_{i}) d\beta_{i} = 1 \]
Note: q approximates the joint, but the individual \(q_{i}(\beta_{i})\) are poor approximations to the true marginals \(p_{i}(\beta_{i})\).
\[ KL\left[q(\beta)\|p(\beta|D)\right] = \int q(\beta)\log \frac{q(\beta)}{p(\beta|D)} d\beta = -\int q(\beta)\log \frac{p(\beta|D)}{q(\beta)} d\beta \]
\[ p(\beta|D) = \frac{p(\beta, D)}{p(D)} \quad \rightarrow \log p(\beta|D) = \log p(\beta, D) - \log p(D) \]
\[ KL\left[q(\beta)\|p(\beta|D)\right] = -\int q(\beta)\log \frac{p(\beta,D)}{q(\beta)} d\beta + \log p(D) \] We can ignore the \(\log p(D)\) term, since it does not involve Q.
Define \[ L\left[q(\beta) \right] = \int q(\beta) \log \frac{p(\beta,D)}{q(\beta)} d\beta \]
So \[ KL\left[q(\beta)\|p(\beta|D)\right] = -L + \log p(D) \] To minimize the KL divergence, we must maximize L.
\(L(q(\beta))\) are lower bounds on the model log-likelihood, \(p(D) = p(D|M)\). \[ \log p(D) = L\left[q(\beta)\right] + KL\left[q(\beta)\|p(\beta|D)\right] \] When the KL-divergence is zero (a perfect fit), L is equal to the model log-likelihood. The KL-divergence is always positive.
\[ \begin{align*} L\left[q(\beta)\right] &= \int q(\beta) \log \frac{p(\beta,D)}{q(\beta)} d\beta \\ &= \int q(\beta) \log p(\beta,D) d\beta - \int q(\beta) \log q(\beta) d\beta \\ &= \left<E(\beta, D)\right>_{q(\beta)} + H\left[q(\beta)\right] \end{align*} \] where we define energy as \(E = \log p\) and entropy as \(H\left[q(\beta)\right] = - \int q(\beta) \log q(\beta) d\beta\).
By the mean-field assumption: \[ L\left[q(\beta)\right] = \int \left(\prod_{i}q_{i}(\beta_{i})\right) E(\beta,D) d\beta - \int \left(\prod_{i}q_{i}(\beta_{i})\right) \sum_{i} \log q_{i}(\beta_{i}) d\beta \]
Consider the partitions \(\beta = \{\beta_{i}, \bar{\beta}_{i}\}\), \(\bar{\beta}_{i} = \beta\setminus\beta_{i}\)
The entropy term: \[ \begin{align*} \int \left(\prod_{i}q_{i}(\beta_{i})\right) \sum_{i} \log q_{i}(\beta_{i}) d\beta &= \sum_{i} \int \left(\prod_{i}q_{i}(\beta_{i})\right) \log q_{i}(\beta_{i}) d\beta \\ &= \sum_{i} \int q_{i}(\beta_{i}) q(\bar{\beta}_{i}) \log q_{i}(\beta_{i}) d\beta_{i} d\bar{\beta}_{i} \\ &= \sum_{i} \int q_{i}(\beta_{i}) \log q_{i}(\beta_{i}) d\beta_{i} \end{align*} \]
The energy term: \[ \begin{align*} \int \left(\prod_{i}q_{i}(\beta_{i})\right) E(\beta,D) d\beta &= \int q_{i}(\beta_{i}) \int q(\bar{\beta}_{i}) E(\beta,D) d \bar{\beta}_{i} d\beta_{i} \\ &= \int q_{i}(\beta_{i}) \left<E(\beta,D)\right>_{q(\bar{\beta}_{i})} d\beta_{i} \\ &= \int q_{i}(\beta_{i}) \log \exp \left<E(\beta,D)\right>_{q(\bar{\beta}_{i})} d\beta_{i} \\ &= \int q_{i}(\beta_{i})\log q_{i}^{\star}(\beta_{i}) d\beta_{i} + \log Z \\ \end{align*} \] where we define \(q_{i}^{\star} = \frac{1}{Z} \exp\left<E(\beta,D)\right>_{q(\bar{\beta}_{i})}\), and Z normalized \(q_{i}^{\star}(\beta_{i})\).
So \[ \begin{align*} L\left[q(\beta)\right] &= \int q_{i}(\beta_{i})\log q_{i}^{\star}(\beta_{i}) d\beta_{i} - \sum_{i} \int q_{i}(\beta_{i}) \log q_{i}(\beta_{i}) d\beta_{i} + \log Z \\ &= \{\int q_{i}(\beta_{i})\log q_{i}^{\star}(\beta_{i}) d\beta_{i} - \int q_{i}(\beta_{i}) \log q_{i}(\beta_{i}) d\beta_{i}\} + H\left[q(\bar{\beta}_{i}) \right] + \log Z \\ &= \int q_{i}(\beta_{i}) \log \frac{q_{i}^{\star}(\beta_{i})}{q_{i}(\beta_{i})} d\beta_{i} + H\left[q(\bar{\beta}_{i}) \right] + \log Z \\ &= -KL\left[q_{i}(\beta_{i}) \| q_{i}^{\star}(\beta_{i}) \right] + H\left[q(\bar{\beta}_{i}) \right] + \log Z \end{align*} \] We convert the problem from minimizing KL divergence between large joint distributions (hard) to minimizing KL divergence between individual 1D distributions (easier).
We wish to maximise L with respect to each \(q_{i}\), subject to the constraint that all \(q_{i}\) are normalizes to unity. L will be maximized when the KL divergence is zero \[ q_{i}(\beta_{i}) = q_{i}^{\star}(\beta_{i}) \] The optimal \(q_{i}(\beta_{i})\) is \[ q_{i}(\beta_{i}) = \frac{1}{Z}\exp\left<E(\beta_{i}, \bar{\beta}_{i},D)\right>_{q(\bar{\beta}_{i})} = \frac{1}{Z}\exp \int \log p(\beta_{i}, \bar{\beta}_{i},D) q(\bar{\beta}_{i}) d \bar{\beta}_{i} \]
\[ \log q_{i}(\beta_{i}) \leftarrow \int \log p(\beta_{i}, \bar{\beta}_{i},D) q(\bar{\beta}_{i}) d \bar{\beta}_{i} \]
Suppose we have M observations $D = {D_{i}}_{i=1}^{M} $, \[ D_{i}|\mu, \gamma \sim N(\mu, \gamma^{-1}) \quad \mu \sim N(m,\beta^{-1}) \quad \gamma \sim Gamma(a,b) \] The task is to infer the posterior distribution.
Assuming the conjugate exponential priors, we have \[ q(x) = q(\mu)q(\gamma) = N(\mu; m, \beta^{-1}) \Gamma(\gamma; a,b) \]
\[ \begin{align*} \log q(\mu) &\leftarrow \int q(\gamma) \log p(\mu, \gamma,D) d \gamma \\ &= \int \Gamma(\gamma; a,b)\log N(\mu; m, \beta^{-1}) \Gamma(\gamma; a,b)\prod_{i}N(D_{i}|\mu,\gamma^{-1}) d \gamma \\ &= \int \Gamma(\gamma; a,b)\{\log N(\mu; m, \beta^{-1}) + \log \Gamma(\gamma; a,b) + \sum_{i} \log N(D_{i}|\mu,\gamma^{-1})\} d \gamma \\ &= \int \Gamma(\gamma; a,b)\log N(\mu; m, \beta^{-1})d \gamma + \int \Gamma(\gamma; a,b)\log \Gamma(\gamma; a,b) d \gamma + \sum_{i} \int \Gamma(\gamma; a,b) \log N(D_{i}|\mu,\gamma^{-1}) d \gamma \\ &= \log N(\mu; m, \beta^{-1}) + \sum_{i} \int \Gamma(\gamma; a,b) \log N(D_{i}|\mu,\gamma^{-1}) d \gamma + \log \frac{1}{Z}\\ \end{align*} \]
\[ \begin{align*} \int \Gamma(\gamma; a,b) \log N(D_{i}|\mu,\gamma^{-1}) d \gamma &= \int \Gamma(\gamma; a,b) \left[c + (D_{i}-\mu)\gamma(D_{i}-\mu) \right] d \gamma \\ &\propto (D_{i}-\mu)\left[\int \gamma \Gamma(\gamma; a,b) d\gamma\right] (D_{i}-\mu) \\ &= (D_{i}-\mu)\left<\gamma\right>(D_{i}-\mu) \\ \end{align*} \]
Note: \(\left<\gamma\right> = \left[\int \gamma \Gamma(\gamma; a,b) d\gamma\right] = \mathbb{E}(\Gamma(\gamma; a,b)) = ab^{-1}\)
\[ \begin{align*} \log q(\mu) &= \log N(\mu; m, \beta^{-1}) + \sum_{i} (D_{i}-\mu)\left<\gamma\right>(D_{i}-\mu) + \log \frac{1}{Z}\\ q(\mu) &= \frac{1}{Z}N(\mu; m, \beta^{-1})\exp{\sum_{i} (D_{i}-\mu)\left<\gamma\right>(D_{i}-\mu)} \\ &= \frac{1}{Z}N(\mu; m, \beta^{-1})\prod_{i}N(\mu | D_{i}, \left<\gamma\right>^{-1}) \end{align*} \]
Therefore, using conjugate prior knowledge \[ q(\mu) = N(\mu| m', \beta'^{-1}) \quad \beta' = \beta + M\left<\gamma\right> \quad m' = \beta'^{-1}(\beta m + \left<\gamma\right>\sum_{i=1}^{M} D_{i}) \]
\[ \mathbf{y} = X_{n\times p}\mathbf{\beta}_{p\times 1} + \mathbf{\epsilon} \quad \mathbf{\epsilon} \sim N_{n}(0, \sigma^2 I) \]
\[ \beta_{j} \sim \pi_{j}(\beta_{j}) \] Only one of the \(\beta\) is non zero. The task is to find the posterior distribution of \(\beta\).
\[ q(\beta) = \prod_{j} q(\beta_{j}) \]
\[ \begin{align*} \log q(\beta_{j}) &\leftarrow \int q(\bar{\beta}_{j}) \log p(\mathbf{y}, \beta) d \bar{\beta}_{j} = \mathbb{E}_{q_{j'}, j'\neq j}\left[\log p(\mathbf{y}, \beta)\right]\\ &= \mathbb{E}_{q_{j'}, j'\neq j}\left[\log \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^{n}\exp\left(-\frac{\|\mathbf{y} - X\beta\|^2}{2\sigma^2}\right)\prod_{j=1}^{p}\pi_{j}(\beta_{j}) \right]\\ &= \mathbb{E}_{q_{j'}, j'\neq j}\left[-\frac{\|\mathbf{y} - X\beta\|^2}{2\sigma^2} + \sum_{j=1}^{p}\log \pi_{j}(\beta_{j}) \right]\\ &= -\frac{\|\mathbf{y} - X_{-j}\bar{\beta}_{-j} - \mathbf{x}_{j}\beta_{j}\|^2}{2\sigma^2} + \log \pi_{j}(\beta_{j}) + C \\ &= -\frac{\|\mathbf{y}_{resid, -j} - \mathbf{x}_{j}\beta_{j}\|^2}{2\sigma^2} + \log \pi_{j}(\beta_{j}) + C \\ q(\beta_{j}) &\propto \exp \left(-\frac{\|\mathbf{y}_{resid, -j} - \mathbf{x}_{j}\beta_{j}\|^2}{2\sigma^2}\right)\pi_{j}(\beta_{j}) \end{align*} \]
\(\bar{\beta}_{-j}\) is the vector of estimated posterior mean other than j.
\[ \beta_{j} \sim \begin{cases} N(0, \sigma^2 \sigma_{\beta}^2) & \text{w.p } \ p \\ 0 & \text{w.p } \ 1-p \end{cases} \] \[ \pi_{j}(\beta_{j}) = p\frac{1}{\sqrt{2\pi\sigma^2\sigma_{\beta}^2}}\exp \left(-\frac{\beta_{j}^2}{2\sigma^2 \sigma_{\beta}^2}\right) + (1-p) \delta_{0} \] Therefore, \[ \beta_{j} \sim_{q_{j}} \begin{cases} N(\tilde{\mu}_{j}, \tilde{\sigma}_{j}^{2}) & \text{w.p } \alpha_{j} \\ 0 & \text{w.p } 1-\alpha_{j} \end{cases} \]
\[ \tilde{\sigma}_{j}^{2} = \frac{\sigma^2\sigma_{\beta}^2}{\mathbf{x}_{j}^{T}\mathbf{x}_{j}\sigma_{\beta}^2 + 1} = \left( \frac{\mathbf{x}_{j}^{T}\mathbf{x}_{j}}{\sigma^2} + \frac{1}{\sigma^2\sigma_{\beta}^2} \right)^{-1} \]
\[ \tilde{\mu}_{j} = \frac{\mathbf{x}_{j}^{T}\mathbf{y}_{res,-j}}{\mathbf{x}_{j}^{T}\mathbf{x}_{j} + 1/\sigma_{\beta}^2} = \frac{\tilde{\sigma}_{j}^{2}}{\sigma^2} \mathbf{x}_{j}^{T}\mathbf{y}_{res,-j} \]
\[ \frac{\alpha_{j}}{1-\alpha_{j}} = \frac{\pi}{1-\pi} \frac{\tilde{\sigma}_{j}}{\sigma_{\beta}\sigma} \exp(\frac{\tilde{\mu}_{j}^{2}}{2\tilde{\sigma}_{j}^{2}}) \quad \quad \alpha_{j} \propto \pi N(\frac{\mathbf{x}_{j}^{T}\mathbf{y}_{res,-j}}{\mathbf{x}_{j}^{T}\mathbf{x}_{j}}; 0, \frac{\sigma^2}{\mathbf{x}_{j}^{T}\mathbf{x}_{j}} + \sigma^2\sigma_{\beta}^2 ) \]
sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS High Sierra 10.13.6
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
loaded via a namespace (and not attached):
[1] workflowr_1.1.1 Rcpp_0.12.18 digest_0.6.15
[4] rprojroot_1.3-2 R.methodsS3_1.7.1 backports_1.1.2
[7] git2r_0.23.0 magrittr_1.5 evaluate_0.11
[10] stringi_1.2.4 whisker_0.3-2 R.oo_1.22.0
[13] R.utils_2.6.0 rmarkdown_1.10 tools_3.5.1
[16] stringr_1.3.1 yaml_2.2.0 compiler_3.5.1
[19] htmltools_0.3.6 knitr_1.20
This reproducible R Markdown analysis was created with workflowr 1.1.1