Last updated: 2018-08-20
workflowr checks: (Click a bullet for more information)Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
set.seed(20180529)
The command set.seed(20180529)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: analysis/.Rhistory
Ignored: docs/.DS_Store
Untracked files:
Untracked: analysis/susie_summarySTAT_Mix.Rmd
Untracked: docs/figure/
Unstaged changes:
Modified: analysis/BayesianLinearRegression.Rmd
Modified: analysis/_site.yml
Modified: analysis/susie.Rmd
Modified: analysis/susie_summarySTAT.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes. y=Xn×pβp×1+ϵϵ∼Nn(0,σ2I) βj∼{N(0,σ2σ2β)γj=10γj=0P(γj=1)=π
Assume the full factorized variational approximation q(β)=p∏j=1qj(βj)
We want to max F(q), min DKL(q||p(β|y,x,σ2)).
p(y,β|X,σ2,σ2β,π)=(1√2πσ2)nexp(−‖ \begin{align*} \mathcal{L}(q) &= \int q(\mathbf{\beta}) \log \frac{p(\mathbf{y}, \mathbf{\beta}|X, \sigma^2, \sigma_{\beta}^2, \pi)}{q(\mathbf{\beta})} d\mathbf{\beta} \\ &= \int q(\mathbf{\beta}) \log \frac{p(\mathbf{y}|\mathbf{\beta}, X, \sigma^2) p(\mathbf{\beta}|\sigma_{\beta}^2, \pi)}{q(\mathbf{\beta})} d\mathbf{\beta} \\ &= \mathbb{E}_{q}\left[ \log N_{n}(\mathbf{y} - X\mathbf{\beta}; 0, \sigma^2I) \right] + \sum_{j=1}^{p} \mathbb{E}_{q}\left[ \log \frac{p_{j}(\beta_{j})}{q_{j}(\beta_{j})} \right] \quad p_{j}(\beta_{j}) = \text{prior of }\beta_{j} \\ &= -\frac{n}{2}\log 2\pi \sigma^2 - \frac{\|\mathbf{y} - X \mathbb{E}_{q}(\mathbf{\beta})\|^2}{2\sigma^2} - \frac{\sum_{j=1}^{p}\mathbf{x}_{j}^{T}\mathbf{x}_{j} \mathbb{V}ar_{q}(\beta_{j}) }{2\sigma^2} - \sum_{j=1}^{p} D_{KL}(q_{j}||p_{j}) \end{align*} The variational Bayes algorithm iteratively updates each approximate marginal distribution q_{j} using \color{red}{\log q_{j}(\beta_{j}) \leftarrow \mathbb{E}_{q_{j'}, j' \neq j}\left[ \log p(\mathbf{y}, \mathbf{\beta})\right] + C} \begin{align*} \mathbb{E}_{q_{j'}, j'\neq j} \left[\log p(\mathbf{y}, \mathbf{\beta}) \right] &= \mathbb{E}_{q_{j'}, j'\neq j} \left[ -\frac{\|\mathbf{y} - X\mathbf{\beta}\|^2}{2\sigma^2} + \sum_{j'=1}^{p} \log p_{j'}(\beta_{j'}) \right] + C \\ &= -\frac{\|\mathbf{y} - X_{-j} \mathbb{E}_{q}(\mathbf{\beta_{-j}}) - \mathbf{x}_{j}\beta_{j} \|^2}{2\sigma^2} + \log p_{j}(\beta_{j}) + C \\ &= -\frac{\|\mathbf{y}_{res,-j} - \mathbf{x}_{j}\beta_{j} \|^2}{2\sigma^2} + \log p_{j}(\beta_{j}) + C \end{align*}Exponentiating the result q_{j}(\beta_{j}) \propto \exp\left( -\frac{\|\mathbf{y}_{res,-j} - \mathbf{x}_{j}\beta_{j} \|^2}{2\sigma^2} \right)p_{j}(\beta_{j}) which is a conditional posterior distribution for \beta_{j}. \beta_{j} \sim_{q_{j}} \begin{cases} N(\tilde{\mu}_{j}, \tilde{\sigma}_{j}^{2}) & \text{w.p } \alpha_{j} \\ 0 & \text{w.p } 1-\alpha_{j} \end{cases}
\tilde{\sigma}_{j}^{2} = \frac{\sigma^2\sigma_{\beta}^2}{\mathbf{x}_{j}^{T}\mathbf{x}_{j}\sigma_{\beta}^2 + 1} = \left( \frac{\mathbf{x}_{j}^{T}\mathbf{x}_{j}}{\sigma^2} + \frac{1}{\sigma^2\sigma_{\beta}^2} \right)^{-1} \tilde{\mu}_{j} = \frac{\mathbf{x}_{j}^{T}\mathbf{y}_{res,-j}}{\mathbf{x}_{j}^{T}\mathbf{x}_{j} + 1/\sigma_{\beta}^2} = \frac{\tilde{\sigma}_{j}^{2}}{\sigma^2} \mathbf{x}_{j}^{T}\mathbf{y}_{res,-j} \frac{\alpha_{j}}{1-\alpha_{j}} = \frac{\pi}{1-\pi} \frac{\tilde{\sigma}_{j}}{\sigma_{\beta}\sigma} \exp(\frac{\tilde{\mu}_{j}^{2}}{2\tilde{\sigma}_{j}^{2}}) \quad \quad \alpha_{j} \propto \pi N(\frac{\mathbf{x}_{j}^{T}\mathbf{y}_{res,-j}}{\mathbf{x}_{j}^{T}\mathbf{x}_{j}}; 0, \frac{\sigma^2}{\mathbf{x}_{j}^{T}\mathbf{x}_{j}} + \sigma^2\sigma_{\beta}^2 )
sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS High Sierra 10.13.6
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
loaded via a namespace (and not attached):
[1] workflowr_1.1.1 Rcpp_0.12.18 digest_0.6.15
[4] rprojroot_1.3-2 R.methodsS3_1.7.1 backports_1.1.2
[7] git2r_0.23.0 magrittr_1.5 evaluate_0.11
[10] stringi_1.2.4 whisker_0.3-2 R.oo_1.22.0
[13] R.utils_2.6.0 rmarkdown_1.10 tools_3.5.1
[16] stringr_1.3.1 yaml_2.2.0 compiler_3.5.1
[19] htmltools_0.3.6 knitr_1.20
This reproducible R Markdown analysis was created with workflowr 1.1.1