Last updated: 2018-10-19

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Repository version: 1476371

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .Rhistory
        Ignored:    .Rproj.user/
        Ignored:    analysis/.Rhistory
        Ignored:    docs/.DS_Store
        Ignored:    docs/figure/Test.Rmd/
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    Rmd 1476371 zouyuxin 2018-10-19 wflow_publish(“analysis/MouthwashMash.Rmd”)
    html 34d5339 zouyuxin 2018-10-19 Build site.
    Rmd 2b25b41 zouyuxin 2018-10-19 wflow_publish(“analysis/MouthwashMash.Rmd”)
    html 7fbf98a zouyuxin 2018-10-19 Build site.
    Rmd e8f7e50 zouyuxin 2018-10-19 wflow_publish(“analysis/MouthwashMash.Rmd”)
    html f58230a zouyuxin 2018-10-19 Build site.
    Rmd ff8c336 zouyuxin 2018-10-19 wflow_publish(“analysis/MouthwashMash.Rmd”)
    html 9156912 zouyuxin 2018-10-19 Build site.
    Rmd 2c4622c zouyuxin 2018-10-19 wflow_publish(“analysis/MouthwashMash.Rmd”)


Suppose we have individual level data for each sample n, gene j, at tissue r \[ \mathbf{Y}_{N\times J}^{(r)} = \mathbf{x}_{N\times 1}^{(r)}\boldsymbol{\beta}_{1\times J}^{(r)} + \mathbf{Z}_{N\times q}^{(r)}\boldsymbol{\alpha}_{q\times J}^{(r)} + \mathbf{E}_{N\times J}^{(r)} \]

where \(y_{ij}^{(r)}\) is the normalized expression level of gene j in sample i, tissue r; \(\mathbf{x}\) is a matrix containing observed covariates, with \(\boldsymbol{\beta}\) a matrix of corresponding effects; \(\mathbf{Z}\) is a matrix of unobserved factors causing unwanted variation, with \(\boldsymbol{\alpha}\) a matrix of corresponding effects; and \(\mathbf{E}\) has independent (Gaussian) errors with means 0 and column-specific variances var(\(e_{ij}\)) = \(\sigma_{j}^{2}\). Only \(\mathbf{Y}\) and \(\mathbf{x}\) are known; other quantities are to be estimated.

MOUTHWASH with mash

  1. For each gene j (\(j = 1, \cdots, J\)) at each tissue r (\(r = 1, \cdots, R\)), obtain an initial estimate \(\hat{\beta}_{j}^{(r)}\) for \(\beta_{j}^{(r)}\) ignoring unwanted variation by using ordinary least squares (OLS) regression of the jth column of \(Y^{(r)}\) on \(x^{(r)}\). \[ \hat{\beta}_{j}^{(r)} = \frac{\mathbf{x}^{(r)T}\mathbf{y}_{\cdot j}^{(r)} }{\mathbf{x}^{(r)T}\mathbf{x}^{(r)}} \] We have \(\hat{\boldsymbol{\beta}}^{(r)} \in \mathbb{R}^{J}\), \(\hat{B} \in \mathbb{R}^{J\times R}\).

  2. For each tissue r, perform FA on the residuals \(\tilde{\mathbf{Y}}^{(r)} = \mathbf{Y}^{(r)} - \mathbf{x}^{(r)}\hat{\boldsymbol{\beta}}^{(r)T}\). The FA model is \[ \tilde{\mathbf{Y}}^{(r)} = \tilde{\mathbf{Z}}^{(r)}\tilde{\boldsymbol{\alpha}}^{(r)} + \tilde{\mathbf{E}}^{(r)} \] We obtain \(\hat{\boldsymbol{\alpha}}^{(r)} \in \mathbb{R}^{q\times p}\) and \(\hat{\sigma}_{j(r)}^{2}\).

  3. A simplified model: \[ \hat{\beta}_{j}^{(r)} \sim N(\beta_{j}^{(r)} + \hat{\boldsymbol{\alpha}^{(r)}}_{j}^{T}\mathbf{z}^{(r)}, \hat{s}_{j(r)}^{2}) \] \(\mathbf{z}^{(r)} \in \mathbb{R}^{q}\), \(\mathbf{S}^{(r)} = diag(\hat{s}_{1(r)}^{2}, \cdots, \hat{s}_{J(r)}^{2})\) \[ \hat{s}_{j(r)}^{2} = \frac{\hat{\sigma}_{j(r)}^{2}}{\mathbf{x}^{T}\mathbf{x}} \] We can formulate it in the mash framework, \(\mathbf{V}\) is the correlation matrix which is unknown \[ \hat{\boldsymbol{\beta}}_{j} \sim N_{R}(\boldsymbol{\beta}_{j} + \hat{\boldsymbol{\alpha}}_{j}^{T} \mathbf{z}, \mathbf{S}_{j}\boldsymbol{\xi}^{1/2}\mathbf{V}\boldsymbol{\xi}^{1/2}\mathbf{S}_{j}) = N_{R}(\boldsymbol{\beta}_{j} + \hat{\boldsymbol{\alpha}}_{j}^{T} \mathbf{z}, \mathbf{S}_{j}\mathbf{C}\mathbf{S}_{j}) \] where \[ \hat{\boldsymbol{\alpha}}_{j} = \left(\begin{matrix} \hat{\mathbf{\alpha}}_{j}^{(1)} & & \\ & \ddots & \\ & & \hat{\mathbf{\alpha}}_{j}^{(R)}\end{matrix}\right)_{Rq\times R} \quad \mathbf{z} = \left(\begin{matrix} \mathbf{z}^{(1)} \\ \vdots \\ \mathbf{z}^{(R)} \end{matrix}\right)_{Rq\times 1} \quad \boldsymbol{\xi} = diag(\xi^{(1)}, \cdots, \xi^{(R)}) \quad \mathbf{S}_{j} = diag(\hat{s}_{j}^{(1)}, \cdots, \hat{s}_{j}^{(R)}) \] \(\hat{s}_{j}^{(r)} = \frac{\hat{\sigma}_{j}^{(r)}}{\mathbf{x}^{(r)T}\mathbf{x}^{(r)}}\), \(\mathbf{C} = \boldsymbol{\xi}^{1/2}\mathbf{V}\boldsymbol{\xi}^{1/2}\). \ Estimate the unimodel effects distribution g and the unwanted variation effects \(\mathbf{z}\), multiplicative parameter \(\boldsymbol{\xi}\) by maximum (marginal) likelihood \[ \begin{align*} (\hat{g}, \hat{\mathbf{z}}, \hat{\boldsymbol{\xi}}) &= \arg \max_{(g,\mathbf{z}, \boldsymbol{\xi})\in \mathcal{U}\times \mathbb{R}^{Rq} \times \mathbb{R}^{R+}} p(\hat{\mathbf{B}}|g,\mathbf{z},\hat{\boldsymbol{\alpha}}, \hat{\mathbf{S}}, \boldsymbol{\xi})\\ (\hat{g}, \hat{\mathbf{z}}, \hat{\mathbf{C}}) &= \arg \max_{(g,\mathbf{z}, \mathbf{C})\in \mathcal{U}\times \mathbb{R}^{Rq} \times \mathbb{R}_{+}^{R\times R}} \prod_{j=1}^{J}\int_{\boldsymbol{\beta}_{j}} N_{R}(\hat{\boldsymbol{\beta}}_{j}|\boldsymbol{\beta}_{j}+\hat{\boldsymbol{\alpha}_{j}}^{T}\mathbf{z}, \mathbf{S}_{j}\mathbf{C}\mathbf{S}_{j}) g(d\boldsymbol{\beta}_{j}) \end{align*} \] Suppose \[ g(\boldsymbol{\beta}_{j}) \sim \sum_{l,k} \pi_{l,k} N_{R}(\boldsymbol{\beta}_{j}; \mathbf{0}, \omega_{l}U_{k}) \] \[ \begin{align*} (\hat{g}, \hat{\mathbf{z}}, \hat{\mathbf{C}}) &= \arg \max_{(g,\mathbf{z}, \mathbf{C})\in \mathcal{U}\times \mathbb{R}^{Rq} \times \mathbb{R}_{+}^{R\times R}} \prod_{j=1}^{J} \sum_{l,k} \pi_{l,k} N_{R}(\hat{\boldsymbol{\beta}}_{j}|\hat{\boldsymbol{\alpha}_{j}}^{T}\mathbf{z}, \mathbf{S}_{j}\mathbf{C}\mathbf{S}_{j} + \omega_{l}U_{k}) \\ &= \arg \max_{(g,\mathbf{z}, \mathbf{C})\in \mathcal{U}\times \mathbb{R}^{Rq} \times \mathbb{R}_{+}^{R\times R}} \prod_{j=1}^{J} \sum_{p=0}^{P} \pi_{p} N_{R}(\hat{\boldsymbol{\beta}}_{j}|\hat{\boldsymbol{\alpha}_{j}}^{T}\mathbf{z}, \mathbf{S}_{j}\mathbf{C}\mathbf{S}_{j} + \Sigma_{p}) \end{align*} \]

  4. Compute posterior distributions \(p(\boldsymbol{\beta}_{j}|\hat{g}, \hat{\mathbf{z}}, \hat{\mathbf{B}}, \hat{\mathbf{S}}, \hat{\mathbf{C}})\), and return posterior summaries.

EM

\[ p(\hat{\mathbf{B}}, \mathbf{W}|\mathbf{z}, \boldsymbol{\pi}, \mathbf{C}) h(\boldsymbol{\pi}|\boldsymbol{\lambda}) = \left(\prod_{p=0}^{P} \pi_{p}^{\lambda_{p}-1} \right) \prod_{j=1}^{J}\prod_{p=0}^{P} \left[\pi_{p} N_{R}(\hat{\boldsymbol{\beta}}_{j}|\hat{\boldsymbol{\alpha}_{j}}^{T}\mathbf{z}, \mathbf{S}_{j}\mathbf{C}\mathbf{S}_{j} + \Sigma_{p})\right]^{\mathbb{I}(w_{jp}=1)} \] The complete log likelihood is \[ l(\mathbf{z}, \boldsymbol{\pi}, \mathbf{C}; \hat{\mathbf{B}}, \mathbf{W}) = \sum_{j=1}^{J} \sum_{p=0}^{P} \mathbb{I}(w_{jp}=1) \left[\log\pi_{p} - \frac{R}{2}\log 2\pi - \frac{1}{2}\log|\mathbf{S}_{j}\mathbf{C}\mathbf{S}_{j} + \Sigma_{p}| - \frac{1}{2}(\hat{\boldsymbol{\beta}}_{j}-\hat{\boldsymbol{\alpha}_{j}}^{T}\mathbf{z})^{T}(\mathbf{S}_{j}\mathbf{C}\mathbf{S}_{j} + \Sigma_{p})^{-1}(\hat{\boldsymbol{\beta}}_{j}-\hat{\boldsymbol{\alpha}_{j}}^{T}\mathbf{z}) \right] + \sum_{p=0}^{P} (\lambda_{p}-1)\log \pi_{p} \]

Let \(\mathbf{z}^{(old)}\), \(\boldsymbol{\pi}^{(old)}\), \(\mathbf{C}^{(old)}\) be the current value of the parameters, \[ p(w_{jp} = 1|\hat{\boldsymbol{\beta}}_{j}, \mathbf{z}^{(old)}, \mathbf{C}^{(old)}, \boldsymbol{\xi}^{(old)}) = \frac{\pi_{p}^{(old)} N_{R}(\hat{\boldsymbol{\beta}}_{j}|\hat{\boldsymbol{\alpha}_{j}}^{T}\mathbf{z}^{(old)}, \mathbf{S}_{j}\mathbf{C}^{(old)}\mathbf{S}_{j} + \Sigma_{p})}{\sum_{p'=0}^{P}\pi_{p'}^{(old)} N_{R}(\hat{\boldsymbol{\beta}}_{j}|\hat{\boldsymbol{\alpha}_{j}}^{T}\mathbf{z}^{(old)}, \mathbf{S}_{j}\mathbf{C}^{(old)}\mathbf{S}_{j} + \Sigma_{p'}) } = \gamma_{jp} \]

E step

Replace \(\mathbb{I}(w_{jp}=1)\) with \(\gamma_{jp}\)

\[ \mathbb{E} = \sum_{j=1}^{J} \sum_{p=0}^{P} \gamma_{jp} \left[\log\pi_{p} - \frac{R}{2}\log 2\pi - \frac{1}{2}\log|\mathbf{S}_{j}\mathbf{C}\mathbf{S}_{j} + \Sigma_{p}| - \frac{1}{2}(\hat{\boldsymbol{\beta}}_{j}-\hat{\boldsymbol{\alpha}_{j}}^{T}\mathbf{z})^{T}(\mathbf{S}_{j}\mathbf{C}\mathbf{S}_{j} + \Sigma_{p})^{-1}(\hat{\boldsymbol{\beta}}_{j}-\hat{\boldsymbol{\alpha}_{j}}^{T}\mathbf{z}) \right] + \sum_{p=0}^{P} (\lambda_{p}-1)\log \pi_{p} \]

M step

\(\boldsymbol{\pi}\): \[ \pi_{m} \leftarrow \frac{(\sum_{j=1}^{J} \gamma_{jp}) + \lambda_{p} - 1}{J - (P+1) + \sum_{p=0}^{P}\lambda_{p}} \]

Then we perform a few iterative updates on \(\mathbf{C}\) and \(\mathbf{z}\).

To update \(\mathbf{z}\) given \(\mathbf{C}\), \[ \hat{\mathbf{z}} = \left[\sum_{j=1}^{J} \hat{\boldsymbol{\alpha}_{j}}\left(\sum_{p=0}^{P} \gamma_{jp}(\mathbf{S}_{j}\mathbf{C}\mathbf{S}_{j} + \Sigma_{p})^{-1}\right) \hat{\boldsymbol{\alpha}_{j}}^{T} \right]^{-1} \left[\sum_{j=1}^{J} \hat{\boldsymbol{\alpha}_{j}}\left(\sum_{p=0}^{P} \gamma_{jp}(\mathbf{S}_{j}\mathbf{C}\mathbf{S}_{j} + \Sigma_{p})^{-1}\right) \hat{\boldsymbol{\beta}_{j}}\right] \]

To update \(\mathbf{C}\) given \(\mathbf{z}\), \[ \hat{\mathbf{C}} = \frac{1}{J} \sum_{j=1}^{J} \mathbf{S}_{j}^{-1} \mathbb{E}\left[(\hat{\boldsymbol{\beta}}_{j} -\boldsymbol{\beta}_{j} - \hat{\boldsymbol{\alpha}_{j}}^{T}\mathbf{z} )(\hat{\boldsymbol{\beta}}_{j} - \boldsymbol{\beta}_{j} - \hat{\boldsymbol{\alpha}_{j}}^{T}\mathbf{z})^{T}|\hat{\boldsymbol{\beta}}_{j}\right]\mathbf{S}_{j}^{-1} \] Details: \[ p(\hat{\mathbf{B}}, \mathbf{B}|\mathbf{z}, \boldsymbol{\pi}, \mathbf{C}) h(\boldsymbol{\pi}|\boldsymbol{\lambda}) = \left(\prod_{p=0}^{P} \pi_{p}^{\lambda_{p}-1} \right) \prod_{j=1}^{J} \left[ N_{R}\left(\hat{\boldsymbol{\beta}}_{j}|\boldsymbol{\beta}_{j} + \hat{\boldsymbol{\alpha}_{j}}^{T}\mathbf{z}, \mathbf{S}_{j}\mathbf{C}\mathbf{S}_{j}\right)\sum_{p=0}^{P} \pi_{p} N_{R}(\boldsymbol{\beta}_{j}|\mathbf{0}, \Sigma_{p})\right] \] \[ \mathbb{E}_{\mathbf{B}|\hat{\mathbf{B}}} \log p(\hat{\mathbf{B}}, \mathbf{B}|\mathbf{z}, \boldsymbol{\pi}, \boldsymbol{\xi}) h(\boldsymbol{\pi}|\boldsymbol{\lambda}) = \sum_{p=0}^{P} (\lambda_{p}-1)\log \pi_{p} + \sum_{j=1}^{J} \mathbb{E}_{\boldsymbol{\beta}_{j}|\hat{\boldsymbol{\beta}}_{j}} \log N_{R}\left(\hat{\boldsymbol{\beta}}_{j}|\boldsymbol{\beta}_{j} + \hat{\boldsymbol{\alpha}_{j}}^{T}\mathbf{z}, \mathbf{S}_{j}\mathbf{C}\mathbf{S}_{j}\right) + \sum_{j=1}^{J} \mathbb{E}_{\boldsymbol{\beta}_{j}|\hat{\boldsymbol{\beta}}_{j}} \sum_{p=0}^{P} \pi_{p} N_{R}(\boldsymbol{\beta}_{j}|\mathbf{0}, \Sigma_{p}) \]

We find \(\mathbf{C}\) that maximize \(\sum_{j=1}^{J} \mathbb{E}_{\boldsymbol{\beta}_{j}|\hat{\boldsymbol{\beta}}_{j}} \log N_{R}\left(\hat{\boldsymbol{\beta}}_{j}|\boldsymbol{\beta}_{j} + \hat{\boldsymbol{\alpha}_{j}}^{T}\mathbf{z}, \mathbf{S}_{j}\mathbf{C}\mathbf{S}_{j}\right)\)

\[ \begin{align*} \log N_{R}\left(\hat{\boldsymbol{\beta}}_{j}|\boldsymbol{\beta}_{j} + \hat{\boldsymbol{\alpha}_{j}}^{T}\mathbf{z}, \mathbf{S}_{j}\mathbf{C}\mathbf{S}_{j}\right) &= -\frac{R}{2}\log 2\pi -\frac{1}{2}\log|\mathbf{S}_{j}\mathbf{C}\mathbf{S}_{j}| - \frac{1}{2} (\hat{\boldsymbol{\beta}}_{j}-\boldsymbol{\beta}_{j} - \hat{\boldsymbol{\alpha}_{j}}^{T}\mathbf{z})^{T} (\mathbf{S}_{j}\mathbf{C}\mathbf{S}_{j})^{-1} (\hat{\boldsymbol{\beta}}_{j}-\boldsymbol{\beta}_{j} - \hat{\boldsymbol{\alpha}_{j}}^{T}\mathbf{z}) \\ &= -\frac{R}{2}\log 2\pi -\frac{1}{2}\log|\mathbf{S}_{j}\mathbf{C}\mathbf{S}_{j}| - \frac{1}{2} (\hat{\boldsymbol{\beta}}_{j}- \hat{\boldsymbol{\alpha}_{j}}^{T}\mathbf{z})^{T} (\mathbf{S}_{j}\mathbf{C}\mathbf{S}_{j})^{-1} (\hat{\boldsymbol{\beta}}_{j} - \hat{\boldsymbol{\alpha}_{j}}^{T}\mathbf{z}) \\ & - \frac{1}{2} \boldsymbol{\beta}_{j}^{T} (\mathbf{S}_{j}\mathbf{C}\mathbf{S}_{j})^{-1} \boldsymbol{\beta}_{j} + \frac{1}{2}\boldsymbol{\beta}_{j}^{T} (\mathbf{S}_{j}\mathbf{C}\mathbf{S}_{j})^{-1}(\hat{\boldsymbol{\beta}}_{j} - \hat{\boldsymbol{\alpha}_{j}}^{T}\mathbf{z}) +\frac{1}{2}(\hat{\boldsymbol{\beta}}_{j} - \hat{\boldsymbol{\alpha}_{j}}^{T}\mathbf{z})^{T} (\mathbf{S}_{j}\mathbf{C}\mathbf{S}_{j})^{-1}\boldsymbol{\beta}_{j} \\ \mathbb{E}_{\boldsymbol{\beta}_{j}|\hat{\boldsymbol{\beta}}_{j}} \log N_{R}\left(\hat{\boldsymbol{\beta}}_{j}|\boldsymbol{\beta}_{j} + \hat{\boldsymbol{\alpha}_{j}}^{T}\mathbf{z}, \mathbf{S}_{j}\mathbf{C}\mathbf{S}_{j}\right) &= -\frac{R}{2}\log 2\pi -\frac{1}{2}\log|\mathbf{S}_{j}\mathbf{C}\mathbf{S}_{j}| - \frac{1}{2} (\hat{\boldsymbol{\beta}}_{j}- \hat{\boldsymbol{\alpha}_{j}}^{T}\mathbf{z})^{T} (\mathbf{S}_{j}\mathbf{C}\mathbf{S}_{j})^{-1} (\hat{\boldsymbol{\beta}}_{j} - \hat{\boldsymbol{\alpha}_{j}}^{T}\mathbf{z}) \\ & + \frac{1}{2}\boldsymbol{\mu}_{j}^{T} (\mathbf{S}_{j}\mathbf{C}\mathbf{S}_{j})^{-1}(\hat{\boldsymbol{\beta}}_{j} - \hat{\boldsymbol{\alpha}_{j}}^{T}\mathbf{z}) +\frac{1}{2}(\hat{\boldsymbol{\beta}}_{j} - \hat{\boldsymbol{\alpha}_{j}}^{T}\mathbf{z})^{T} (\mathbf{S}_{j}\mathbf{C}\mathbf{S}_{j})^{-1}\boldsymbol{\mu}_{j} - \frac{1}{2} tr\left((\mathbf{S}_{j}\mathbf{C}\mathbf{S}_{j})^{-1} \mathbb{E}_{\boldsymbol{\beta}_{j}|\hat{\boldsymbol{\beta}}_{j}}\left[\boldsymbol{\beta}_{j}\boldsymbol{\beta}_{j}^{T}\right] \right) \end{align*} \]

\[ \begin{align*} f(\mathbf{C}) &= \sum_{j=1}^{J} \mathbb{E}_{\boldsymbol{\beta}_{j}|\hat{\boldsymbol{\beta}}_{j}} \log N_{R}\left(\hat{\boldsymbol{\beta}}_{j}|\boldsymbol{\beta}_{j} + \hat{\boldsymbol{\alpha}_{j}}^{T}\mathbf{z}, \mathbf{S}_{j}\mathbf{C}\mathbf{S}_{j}\right) \\ &= \sum_{j=1}^{J} -\frac{R}{2}\log 2\pi -\log|\mathbf{S}_{j}| - \frac{1}{2} \log|C| - \frac{1}{2} (\hat{\boldsymbol{\beta}}_{j}- \hat{\boldsymbol{\alpha}_{j}}^{T}\mathbf{z})^{T} (\mathbf{S}_{j}\mathbf{C}\mathbf{S}_{j})^{-1} (\hat{\boldsymbol{\beta}}_{j} - \hat{\boldsymbol{\alpha}_{j}}^{T}\mathbf{z}) \\ & + \frac{1}{2}\boldsymbol{\mu}_{j}^{T} (\mathbf{S}_{j}\mathbf{C}\mathbf{S}_{j})^{-1}(\hat{\boldsymbol{\beta}}_{j} - \hat{\boldsymbol{\alpha}_{j}}^{T}\mathbf{z}) +\frac{1}{2}(\hat{\boldsymbol{\beta}}_{j} - \hat{\boldsymbol{\alpha}_{j}}^{T}\mathbf{z})^{T} (\mathbf{S}_{j}\mathbf{C}\mathbf{S}_{j})^{-1}\boldsymbol{\mu}_{j} - \frac{1}{2} tr\left((\mathbf{S}_{j}\mathbf{C}\mathbf{S}_{j})^{-1} \mathbb{E}_{\boldsymbol{\beta}_{j}|\hat{\boldsymbol{\beta}}_{j}}\left[\boldsymbol{\beta}_{j}\boldsymbol{\beta}_{j}^{T}\right] \right) \end{align*} \]

\[ \begin{align*} f(\mathbf{C})' &= \sum_{j=1}^{J} -\frac{1}{2}\mathbf{C}^{-1} + \frac{1}{2}\mathbf{C}^{-1}\mathbf{S}_{j}^{-1}(\hat{\boldsymbol{\beta}}_{j}- \hat{\boldsymbol{\alpha}_{j}}^{T}\mathbf{z})(\hat{\boldsymbol{\beta}}_{j}- \hat{\boldsymbol{\alpha}_{j}}^{T}\mathbf{z})^{T}\mathbf{S}_{j}^{-1}\mathbf{C}^{-1} \\ & - \frac{1}{2} \mathbf{C}^{-1}\mathbf{S}_{j}^{-1} \boldsymbol{\mu}_{j} (\hat{\boldsymbol{\beta}}_{j} - \hat{\boldsymbol{\alpha}_{j}}^{T}\mathbf{z})^{T} \mathbf{S}_{j}^{-1}\mathbf{C}^{-1} - \frac{1}{2} \mathbf{C}^{-1}\mathbf{S}_{j}^{-1} (\hat{\boldsymbol{\beta}}_{j} - \hat{\boldsymbol{\alpha}_{j}}^{T}\mathbf{z})\boldsymbol{\mu}_{j}^{T} \mathbf{S}_{j}^{-1}\mathbf{C}^{-1} + \frac{1}{2} \mathbf{C}^{-1} \mathbf{S}_{j}^{-1}\mathbb{E}_{\boldsymbol{\beta}_{j}|\hat{\boldsymbol{\beta}}_{j}}\left[\boldsymbol{\beta}_{j}\boldsymbol{\beta}_{j}^{T}\right]\mathbf{S}_{j}^{-1} \mathbf{C}^{-1} = 0 \\ 0 &= \sum_{j=1}^{J} -\mathbf{C} + \mathbf{S}_{j}^{-1}(\hat{\boldsymbol{\beta}}_{j}- \hat{\boldsymbol{\alpha}_{j}}^{T}\mathbf{z})(\hat{\boldsymbol{\beta}}_{j}- \hat{\boldsymbol{\alpha}_{j}}^{T}\mathbf{z})^{T}\mathbf{S}_{j}^{-1} \\ & - \mathbf{S}_{j}^{-1} \boldsymbol{\mu}_{j} (\hat{\boldsymbol{\beta}}_{j} - \hat{\boldsymbol{\alpha}_{j}}^{T}\mathbf{z})^{T} \mathbf{S}_{j}^{-1} - \mathbf{S}_{j}^{-1} (\hat{\boldsymbol{\beta}}_{j} - \hat{\boldsymbol{\alpha}_{j}}^{T}\mathbf{z})\boldsymbol{\mu}_{j}^{T} \mathbf{S}_{j}^{-1} + \mathbf{S}_{j}^{-1}\mathbb{E}_{\boldsymbol{\beta}_{j}|\hat{\boldsymbol{\beta}}_{j}}\left[\boldsymbol{\beta}_{j}\boldsymbol{\beta}_{j}^{T}\right]\mathbf{S}_{j}^{-1} \\ \hat{\mathbf{C}} &= \frac{1}{J} \sum_{j=1}^{J} \mathbf{S}_{j}^{-1} \left[ (\hat{\boldsymbol{\beta}}_{j}- \hat{\boldsymbol{\alpha}_{j}}^{T}\mathbf{z})(\hat{\boldsymbol{\beta}}_{j}- \hat{\boldsymbol{\alpha}_{j}}^{T}\mathbf{z})^{T} - \boldsymbol{\mu}_{j} (\hat{\boldsymbol{\beta}}_{j} - \hat{\boldsymbol{\alpha}_{j}}^{T}\mathbf{z})^{T} - (\hat{\boldsymbol{\beta}}_{j} - \hat{\boldsymbol{\alpha}_{j}}^{T}\mathbf{z})\boldsymbol{\mu}_{j}^{T} + \mathbb{E}_{\boldsymbol{\beta}_{j}|\hat{\boldsymbol{\beta}}_{j}}\left[\boldsymbol{\beta}_{j}\boldsymbol{\beta}_{j}^{T}\right] \right] \mathbf{S}_{j}^{-1} \\ &= \frac{1}{J} \sum_{j=1}^{J} \mathbf{S}_{j}^{-1} \mathbb{E}\left[(\hat{\boldsymbol{\beta}}_{j} -\boldsymbol{\beta}_{j} - \hat{\boldsymbol{\alpha}_{j}}^{T}\mathbf{z} )(\hat{\boldsymbol{\beta}}_{j} - \boldsymbol{\beta}_{j} - \hat{\boldsymbol{\alpha}_{j}}^{T}\mathbf{z})^{T}|\hat{\boldsymbol{\beta}}_{j}\right]\mathbf{S}_{j}^{-1} \end{align*} \]


This reproducible R Markdown analysis was created with workflowr 1.1.1