Last updated: 2019-01-10

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(20180529)

    The command set.seed(20180529) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: df40371

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .DS_Store
        Ignored:    .Rhistory
        Ignored:    .Rproj.user/
        Ignored:    analysis/.Rhistory
        Ignored:    docs/.DS_Store
        Ignored:    docs/figure/Test.Rmd/
    
    Untracked files:
        Untracked:  analysis/MASH_est_Cor.Rmd
        Untracked:  analysis/MashEstCorProblem.Rmd
        Untracked:  analysis/MashMedian.Rmd
        Untracked:  analysis/mashMean.Rmd
        Untracked:  code/EstCorV.R
        Untracked:  docs/Estimate_Null_Cor_New.pdf
        Untracked:  docs/Estimate_Null_Cor_Old.pdf
        Untracked:  output/MASH.result.1.rds
        Untracked:  output/MASH.result.10.rds
        Untracked:  output/MASH.result.2.rds
        Untracked:  output/MASH.result.3.rds
        Untracked:  output/MASH.result.4.rds
        Untracked:  output/MASH.result.5.rds
        Untracked:  output/MASH.result.6.rds
        Untracked:  output/MASH.result.7.rds
        Untracked:  output/MASH.result.8.rds
        Untracked:  output/MASH.result.9.rds
    
    Unstaged changes:
        Modified:   analysis/susieProblem2.Rmd
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    Rmd df40371 zouyuxin 2019-01-10 wflow_publish(“analysis/MASH_est_Cor_Block.Rmd”)
    html 8809dc7 zouyuxin 2018-12-20 Build site.
    Rmd acdf37e zouyuxin 2018-12-20 wflow_publish(“analysis/MASH_est_Cor_Block.Rmd”)


library(mashr)
Loading required package: ashr
library(magic)
Loading required package: abind
library(mvtnorm)
library(knitr)
library(kableExtra)

ROC.table = function(data, model){
  sign.test = data*model$result$PosteriorMean
  thresh.seq = seq(0, 1, by=0.005)[-1]
  m.seq = matrix(0,length(thresh.seq), 2)
  colnames(m.seq) = c('TPR', 'FPR')
  for(t in 1:length(thresh.seq)){
    m.seq[t,] = c(sum(sign.test>0 & model$result$lfsr <= thresh.seq[t])/sum(data!=0),
                  sum(data==0 & model$result$lfsr <=thresh.seq[t])/sum(data==0))
  }
  return(m.seq)
}
V1 = matrix(0.75, 20,20)
diag(V1) = 1

V2 = matrix(0.75, 30,30)
diag(V2) = 1

V = adiag(V1, V2)

set.seed(1)
n = 10000
B1 = matrix(0, n/2, 50)
effect = rnorm(n/2)
B2 = matrix(effect, n/2, 50)
B = rbind(B1, B2)

Ehat = rmvnorm(n, sigma = V)

Bhat = B + Ehat
data = mash_set_data(Bhat = Bhat, Shat = 1)
U.c = cov_canonical(data)
m.1by1 = mash_1by1(data)
strong = get_significant_results(m.1by1)
U.pca = cov_pca(data, 3, subset = strong)
U.ed = cov_ed(data, U.pca, subset = strong)

V.simple = estimate_null_correlation_simple(data)
data.simple = mash_update_data(data, V = V.simple)
m.simple = mash(data.simple, c(U.c, U.ed))
 - Computing 10000 x 945 likelihood matrix.
 - Likelihood calculations took 17.50 seconds.
 - Fitting model with 945 mixture components.
 - Model fitting took 93.12 seconds.
 - Computing posterior matrices.
 - Computation allocated took 0.90 seconds.
V.current = estimate_null_correlation(data, c(U.c, U.ed))
m.current = V.current$mash.model

data.true = mash_update_data(data, V = V)
m.true = mash(data.true, c(U.c, U.ed))
 - Computing 10000 x 945 likelihood matrix.
 - Likelihood calculations took 22.17 seconds.
 - Fitting model with 945 mixture components.
 - Model fitting took 123.75 seconds.
 - Computing posterior matrices.
 - Computation allocated took 1.81 seconds.
corrplot::corrplot(V.simple, method='color', type='upper', tl.col="black", tl.srt=45, tl.cex = 0.5, diag = TRUE, col=colorRampPalette(c("blue", "white", "red"))(200), cl.lim = c(-1,1), title = 'Simple', mar=c(0,0,5,0))

corrplot::corrplot(V.current$V, method='color', type='upper', tl.col="black", tl.srt=45, tl.cex = 0.5, diag = TRUE, col=colorRampPalette(c("blue", "white", "red"))(200), cl.lim = c(-1,1), title = 'Current EZ', mar=c(0,0,5,0))

loglike = c(get_loglik(m.simple), get_loglik(m.current), get_loglik(m.true))
sig = c(length(get_significant_results(m.simple)), length(get_significant_results(m.current)), length(get_significant_results(m.true)))
fd = c(sum(get_significant_results(m.simple)<=5000), sum(get_significant_results(m.current)<=5000), sum(get_significant_results(m.true)<=5000))
rrmse = c(sqrt(mean((B - m.simple$result$PosteriorMean)^2)/mean((B - Bhat)^2)), 
          sqrt(mean((B - m.current$result$PosteriorMean)^2)/mean((B - Bhat)^2)), 
          sqrt(mean((B - m.true$result$PosteriorMean)^2)/mean((B - Bhat)^2)))
tmp = cbind(loglike, sig, fd, rrmse)
colnames(tmp) = c('logliklihood', '#sig', 'false pos','RRMSE')
rownames(tmp) = c('simple', 'current', 'true')
tmp %>% kable() %>% kable_styling()
logliklihood #sig false pos RRMSE
simple -441847.3 1058 65 0.4879696
current -409465.6 480 6 0.4503394
true -410051.5 560 13 0.4478056
roc.seq = ROC.table(B, m.true)
plot(roc.seq[,'FPR'], roc.seq[,'TPR'], type='l', xlab = 'FPR', ylab='TPR',
       main=paste0(' True Pos vs False Pos'), cex=1.5, lwd = 1.5, col = 'cyan')
roc.seq = ROC.table(B, m.current)
lines(roc.seq[,'FPR'], roc.seq[,'TPR'], col='purple', lwd = 1.5)
roc.seq = ROC.table(B, m.simple)
lines(roc.seq[,'FPR'], roc.seq[,'TPR'], col='red', lwd = 1.5)
legend('bottomright', c('true','current', 'simple'), col=c('cyan','purple', 'red'),
           lty=c(1,1,1), lwd=c(1.5,1.5, 1.5))

Expand here to see past versions of unnamed-chunk-4-1.png:
Version Author Date
8809dc7 zouyuxin 2018-12-20

barplot(get_estimated_pi(m.simple), las=2, main='simple')

Expand here to see past versions of unnamed-chunk-5-1.png:
Version Author Date
8809dc7 zouyuxin 2018-12-20

barplot(get_estimated_pi(m.current), las=2, main='current')

Expand here to see past versions of unnamed-chunk-6-1.png:
Version Author Date
8809dc7 zouyuxin 2018-12-20

barplot(get_estimated_pi(m.true), las=2, main='true')

Expand here to see past versions of unnamed-chunk-7-1.png:
Version Author Date
8809dc7 zouyuxin 2018-12-20

Session information

sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS  10.14.2

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] kableExtra_0.9.0  knitr_1.20        mvtnorm_1.0-8     magic_1.5-9      
[5] abind_1.4-5       mashr_0.2.19.0555 ashr_2.2-26      

loaded via a namespace (and not attached):
 [1] corrplot_0.84     lattice_0.20-35   colorspace_1.3-2 
 [4] htmltools_0.3.6   viridisLite_0.3.0 yaml_2.2.0       
 [7] rlang_0.3.0.1     R.oo_1.22.0       mixsqp_0.1-93    
[10] pillar_1.3.1      R.utils_2.7.0     foreach_1.4.4    
[13] plyr_1.8.4        stringr_1.3.1     munsell_0.5.0    
[16] workflowr_1.1.1   rvest_0.3.2       R.methodsS3_1.7.1
[19] codetools_0.2-15  evaluate_0.12     pscl_1.5.2       
[22] doParallel_1.0.14 parallel_3.5.1    highr_0.7        
[25] Rcpp_1.0.0        readr_1.1.1       backports_1.1.2  
[28] scales_1.0.0      rmeta_3.0         truncnorm_1.0-8  
[31] hms_0.4.2         digest_0.6.18     stringi_1.2.4    
[34] grid_3.5.1        rprojroot_1.3-2   tools_3.5.1      
[37] magrittr_1.5      tibble_1.4.2      crayon_1.3.4     
[40] whisker_0.3-2     pkgconfig_2.0.2   MASS_7.3-50      
[43] Matrix_1.2-14     SQUAREM_2017.10-1 xml2_1.2.0       
[46] assertthat_0.2.0  rmarkdown_1.10    httr_1.3.1       
[49] rstudioapi_0.8    iterators_1.0.10  R6_2.3.0         
[52] git2r_0.23.0      compiler_3.5.1   

This reproducible R Markdown analysis was created with workflowr 1.1.1