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1 The Student’s t Distribution

Univariate

Student (x |µ, λ, ν) ≡
∫ ∞

0

Normal
(
x
∣∣µ, (λη)−1

)
Gamma (η | ν/2, ν/2) dη

=
Γ
(
ν+1
2

)
Γ
(
ν
2

) (
λ

πν

) 1
2
(

1 +
λ(x− µ)2

ν

)− ν+1
2

Multivariate

Student (x |µ,Λ, ν) ≡
∫ ∞

0

Normal
(
x
∣∣µ, (ηΛ)−1

)
Gamma (η | ν/2, ν/2) dη

=
Γ
(
ν+D

2

)
Γ
(
ν
2

) (
|Λ|
πν

) 1
2
(

1 +
(x− µ)TΛ(x− µ)

ν

)− ν+D2

where the vectors1 x and µ are D-dimensional and Λ is D ×D.

2 The General EM Algorithm

We want to find the maximum likelihood estimate for a set of parameters Θ given a set of observed data
X by maximizing

P (X |Θ) .

We assume that it is hard to solve this problem directly but that it is relatively easy to evaluate

P (X,Z |Θ)

1They’re all column vectors.
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where Z is a set of latent variables such that

P (X |Θ) =
∫
Z

P (X,Z |Θ) .

The EM method then involves the following steps.

1. Write down the complete data log likelihood, logP (X,Z |Θ) .

2. Write down the posterior latent distribution, P (Z |X,Θ) .

3. E step: write down the expectations under the distribution P (Z |X,Θ0) for all terms in the com-
plete data log likelihood (step 1).

4. Write down the function to maximize,

Q(Θ,Θ0) =
∫
Z

P (Z |X,Θ0) logP (X,Z |Θ) ,

replacing integrals with the expectations from the E step.

5. M step: solve
∂Q

∂Θ
= 0

to yield the update equations.

Once all of the expectation update equations (from step 3) and maximization update equations (from
step 5) are known, we initialize our current estimate of the parameters Θ and update them by iterating
the E and M updates until convergence. Note that a subscript 0 is used here and in the rest of the article
to denote the old setting of the parameters. With each iteration the new parameter setting (found in
step 5) will replace the old one.

3 Derivation of the EM Update Equations for the Univariate
Student’s t Distribution

To cast the Student’s t distribution in the EM framework we write the likelihood for a single data point,

P (xi |Θ) = Student (xi |µ, λ, ν) .

By viewing this as an infinite mixture of Normal distributions,

P (xi |Θ) =
∫
ηi

Normal
(
xi
∣∣µ, (ληi)−1

)
Gamma (ηi | ν/2, ν/2) ,

we identify
X = {xi}, Z = {ηi}, Θ = {µ, λ, ν}

so that the complete likelihood function is

P (X,Z |Θ) =
N∏
i=1

Normal
(
xi
∣∣µ, (ληi)−1

)
Gamma (ηi | ν/2, ν/2) .

Step 1: Complete log likelihood function

logP (X,Z |Θ) =
N∑
i=1

log Normal
(
xi
∣∣µ, (ληi)−1

)
+ log Gamma (ηi | ν/2, ν/2)

=
N∑
i=1

−1
2

log 2π +
1
2

log λ+
1
2

log ηi −
ληi
2

(xi − µ)2

− log Γ
(ν

2

)
+
ν

2
log

ν

2
+
(ν

2
− 1
)

log ηi −
ν

2
ηi (1)
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Step 2: Posterior latent distribution

P (Z |X,Θ) ∝ P (X,Z |Θ)

=
N∏
i=1

Normal
(
xi
∣∣µ, (ληi)−1

)
Gamma (ηi | ν/2, ν/2)

∝
N∏
i=1

Gamma (ηi | ai, bi) (2)

where the last step follows from the fact that the Gamma distribution is the conjugate prior to a Normal
distribution with unknown precision. We find the parameters ai and bi by combining the factors from
the Normal and Gamma distributions.2

P (X,Z |Θ) =
N∏
i=1

Normal
(
xi
∣∣µ, (ληi)−1

)
Gamma (ηi | ν/2, ν/2)

∝
N∏
i=1

[
η
ν−1
2

i exp
(
−ηi

(
ν

2
+
λ

2
(xi − µ)2

))]
(All factors independent of ηi are taken up in the proportionality.)

∝
N∏
i=1

Gamma
(
ηi

∣∣∣∣ ν + 1
2

,
ν

2
+
λ

2
(xi − µ)2

)
and hence

ai =
ν + 1

2
,

bi =
ν

2
+
λ

2
(xi − µ)2.

Step 3: Expectation By looking at (1) we find that we need to calculate the expectations of 1, ηi
and log ηi under the posterior latent distribution (2).

E[1] = 1

E[ηi] =
∫
Z

ηi

N∏
j=1

Gamma (ηj | aj , bj)

=
∫
ηi

ηi Gamma (ηi | ai, bi)

= ai/bi

=
ν0 + 1

ν0 + λ0(xi − µ0)2

E[log ηi] =
∫
Z

log ηi
N∏
j=1

Gamma (ηj | aj , bj)

=
∫
ηi

log ηi Gamma (ηi | ai, bi)

= ψ(ai)− log bi

= ψ

(
ν0 + 1

2

)
− log

ν0 + λ0(xi − µ0)2

2

See Appendix A for the definition of the digamma function, ψ(·).
2See Appendix A for the algebraic expansions of the Normal and Gamma distributions.
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Step 4: Function to optimize

Q(Θ,Θ0) =
∫
Z

P (Z |X,Θ0) logP (X,Z |Θ)

= −N
2

log 2π +
N

2
log λ+

1
2

N∑
i=1

E[log ηi]−
λ

2

N∑
i=1

(xi − µ)2E[ηi]

−N log Γ
(ν

2

)
+
Nν

2
log

ν

2
+
(ν

2
− 1
) N∑
i=1

E[log ηi]−
ν

2

N∑
i=1

E[ηi]

Note that all the elements of Θ0 are now implicit in the expectations.

Step 5: Maximization

∂Q

∂µ
= 0 ⇒ λ

N∑
i=1

(xi − µ)E[ηi] = 0

⇒ µ =
∑N
i=1 xiE[ηi]∑N
i=1 E[ηi]

∂Q

∂λ
= 0 ⇒ N

2λ
− 1

2

N∑
i=1

(xi − µ)2E[ηi] = 0

⇒ λ =

(
1
N

N∑
i=1

(xi − µ)2E[ηi]

)−1

Note that we require the updated µ value to find λ.

∂Q

∂ν
= 0 ⇒ −N

2
ψ
(ν

2

)
+
N

2
log

ν

2
+
N

2
+

1
2

N∑
i=1

E[log ηi]−
1
2

N∑
i=1

E[ηi] = 0

⇒ ψ
(ν

2

)
− log

ν

2
= 1 +

1
N

N∑
i=1

E[log ηi]−
1
N

N∑
i=1

E[ηi]

Note that there is no closed form solution for ν—it has to be found numerically.

4 Multivariate Case

The derivation of the multivariate case requires taking vector and matrix derivatives to find the values
of µ and Λ but is otherwise very similar to the univariate case. The update equations turn out to be3

E[ηi] =
ν0 +D

ν0 + (xi − µ0)TΛ0(xi − µ0)

E[log ηi] = ψ

(
ν0 +D

2

)
− log

ν0 + (xi − µ0)TΛ0(xi − µ0)
2

µ =
∑N
i=1 xiE[ηi]∑N
i=1 E[ηi]

Λ =

(
1
N

N∑
i=1

(xi − µ)(xi − µ)TE[ηi]

)−1

The update equation for ν remains unchanged.
3D is still the dimensionality.
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5 Demonstration

The update equations for the univariate case were implemented in Python.4 Figure 1 shows the results.
Notice how the ML fit to the Normal distribution has to increase its variance (flatten out) more and more
to accommodate the increasing number of outliers. The Student’s t distribution is relatively robust to
this.
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Figure 1: Plots of data points drawn from a Normal distribution along with a small number of outliers.
The ML fit of a Normal (with and without considering the outliers) and a Student’s t to the data are
also shown.

A Distributions and Relations

Normal
(
x
∣∣µ, σ2

)
=

(
2πσ2

)− 1
2 exp

(
− 1

2σ2
(x− µ)2

)
Gamma (x | a, b) =

1
Γ(a)

baxa−1e−bx

EGamma[x] = a/b

EGamma[log x] = ψ(a)− log b

ψ(x) =
Γ′(x)
Γ(x)
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4If you have a look at the code, you’ll probably notice that the update equations are a bit different from those in the
text. This is simply due to optimization—they are mathematically equivalent.
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