Last updated: 2018-12-19

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(20180529)

    The command set.seed(20180529) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: ced6304

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .DS_Store
        Ignored:    .Rhistory
        Ignored:    .Rproj.user/
        Ignored:    analysis/.Rhistory
        Ignored:    docs/.DS_Store
        Ignored:    docs/figure/Test.Rmd/
    
    Untracked files:
        Untracked:  analysis/DifferentCovModelR50.Rmd
        Untracked:  analysis/MASH_est_Cor.Rmd
        Untracked:  analysis/MashEstCorProblem.Rmd
        Untracked:  analysis/MashMedian.Rmd
        Untracked:  analysis/mashMean.Rmd
        Untracked:  code/DifferentCov.R
        Untracked:  code/EstCorV.R
        Untracked:  code/generateDataV.R
        Untracked:  code/summary.R
        Untracked:  docs/Estimate_Null_Cor_New.pdf
        Untracked:  docs/Estimate_Null_Cor_Old.pdf
        Untracked:  output/MASH.result.1.rds
        Untracked:  output/MASH.result.10.rds
        Untracked:  output/MASH.result.2.rds
        Untracked:  output/MASH.result.3.rds
        Untracked:  output/MASH.result.4.rds
        Untracked:  output/MASH.result.5.rds
        Untracked:  output/MASH.result.6.rds
        Untracked:  output/MASH.result.7.rds
        Untracked:  output/MASH.result.8.rds
        Untracked:  output/MASH.result.9.rds
    
    Unstaged changes:
        Modified:   analysis/susieProblem2.Rmd
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    Rmd ced6304 zouyuxin 2018-12-19 wflow_publish(“analysis/DifferentCovModel.Rmd”)
    html d144bac zouyuxin 2018-12-12 Build site.
    Rmd 3c5a13d zouyuxin 2018-12-12 wflow_publish(“analysis/DifferentCovModel.Rmd”)
    html 7ff2647 zouyuxin 2018-12-11 Build site.
    Rmd 3a32721 zouyuxin 2018-12-11 wflow_publish(“analysis/DifferentCovModel.Rmd”)
    html 8ba1a51 zouyuxin 2018-12-11 Build site.
    Rmd 42b495f zouyuxin 2018-12-11 wflow_publish(“analysis/DifferentCovModel.Rmd”)


knitr::read_chunk("code/DifferentCov.R")
library(plyr)

DifferentCov = function(data, Ulist,
                        gridmult= sqrt(2),
                        control = list(),
                        pi_thresh = 1e-10,
                        outputlevel = 2){

  grid = mashr:::autoselect_grid(data, gridmult)
  Ulist = mashr:::normalize_Ulist(Ulist)
  prior = "uniform"
  L = length(Ulist)

  grid.full = c(0, grid)
  xUlist.null = rep(Ulist, length(grid.full))
  xUlist = mashr:::expand_cov(Ulist,grid.full,FALSE)

  xUlist.full = Map("+", xUlist.null, xUlist)

  lm = calc_relative_lik_matrix(data,xUlist.full)

  prior = mashr:::set_prior(ncol(lm$loglik_matrix),prior)

  pi_s = mashr:::optimize_pi(exp(lm$loglik_matrix),prior=prior,optmethod='mixSQP', control=control)

  which.comp = (pi_s > pi_thresh)
  posterior_weights = mashr:::compute_posterior_weights(pi_s,exp(lm$loglik_matrix))
  if (outputlevel > 1) {
    xUlistinv = rep(lapply(xUlist.null[1:L], function(U) solve(U)), length(grid.full))
    posterior_cov = mashr:::expand_cov(Ulist,sqrt((grid.full^2)/(1+grid.full^2)),FALSE)
    posterior_matrices = compute_posterior_matrices(data,xUlistinv, posterior_cov, posterior_weights)
  } else {
    posterior_matrices = NULL
  }

  vloglik = mashr:::compute_vloglik_from_matrix_and_pi(pi_s,lm, data$Shat_alpha)
  loglik = sum(vloglik)
  null_loglik = compute_null_loglik_from_matrix(pi_s, lm, data$Shat_alpha, L)
  alt_loglik = compute_alt_loglik_from_matrix_and_pi(pi_s, lm, data$Shat_alpha, L)

  # results
  fitted_g = list(pi=pi_s, Ulist=Ulist, grid=grid.full, usepointmass=FALSE)
  m=list(result = posterior_matrices,
         loglik = loglik, vloglik = vloglik,
         null_loglik = null_loglik,
         alt_loglik = alt_loglik,
         fitted_g = fitted_g,
         posterior_weights = posterior_weights,
         alpha=data$alpha)
  #for debugging
  if(outputlevel==4){m = c(m,list(lm=lm))}
  return(m)
}

#' Compute vector of null loglikelihoods from a matrix of log-likelihoods
#' @param lm the results of a likelihood matrix calculation from \code{calc_relative_lik_matrix}
#' whose first column corresponds to null
#' @param Shat_alpha matrix of Shat^alpha
compute_null_loglik_from_matrix = function(pi_s, lm,Shat_alpha, L){
  return(log(exp(lm$loglik_matrix[,1:L,drop=FALSE]) %*% (pi_s[1:L]/(1-sum(pi_s[-c(1:L)])))) +lm$lfactors-rowSums(log(Shat_alpha)))
}

#' Compute vector of alternative loglikelihoods from a matrix of log-likelihoods and fitted pi
#' @param pi_s the vector of mixture proportions, with first element corresponding to null
#' @param lm the results of a likelihood matrix calculation from \code{calc_relative_lik_matrix}
#' whose first column corresponds to null
#' @param Shat_alpha matrix of Shat^alpha
compute_alt_loglik_from_matrix_and_pi = function(pi_s,lm,Shat_alpha,L){
  return(log(exp(lm$loglik_matrix[,-c(1:L),drop=FALSE]) %*% (pi_s[-c(1:L)]/(1-sum(pi_s[1:L]))))+lm$lfactors-rowSums(log(Shat_alpha)))
}

calc_lik_matrix_common_cov = function(data, Ulist, log = FALSE){
  res <- laply(Ulist,function(U)
      dmvnorm(x = data$Bhat,sigma = U,log = log))
  dimnames(res) = NULL # just to make result identical to the non-common-cov version
  return(t(res))
}


calc_lik_matrix <- function (data, Ulist, log = FALSE) {

  res <- calc_lik_matrix_common_cov(data,Ulist,log)
  if (nrow(res) == 1)
    res <- matrix(res)
  if (ncol(res) > 1)
    colnames(res) <- names(Ulist)

  # Give a warning if any columns have -Inf likelihoods.
  rows <- which(apply(res,2,function (x) any(is.infinite(x))))
  if (length(rows) > 0)
    warning(paste("Some mixture components result in non-finite likelihoods,",
                  "either\n","due to numerical underflow/overflow,",
                  "or due to invalid covariance matrices",
                  paste(rows,collapse=", "),
                  "\n"))
  return(res)

}

calc_relative_lik_matrix <-
  function (data, Ulist) {

    # Compute the J x P matrix of conditional log-likelihoods.
    matrix_llik <- calc_lik_matrix(data,Ulist,log = TRUE)

    # Avoid numerical issues (overflow or underflow) by subtracting the
    # largest entry in each row.
    lfactors    <- apply(matrix_llik,1,max)
    matrix_llik <- matrix_llik - lfactors
    return(list(loglik_matrix = matrix_llik,
                lfactors   = lfactors))
  }

posterior_mean <- function(bhat, Vinv, U1){
  return(U1 %*% (Vinv %*% bhat))
}

#' @title posterior_mean_matrix
#' @param Bhat J by R matrix of observations
#' @param Vinv R x R inverse covariance matrix for the likelihood
#' @param U1 R x R posterior covariance matrix, computed using posterior_cov
#' @return R vector of posterior mean
#' @description Computes posterior mean under multivariate normal model for each row of matrix Bhat.
#' Note that if bhat is N_R(b,V) and b is N_R(0,U) then b|bhat N_R(mu1,U1).
#' This function returns a matrix with jth row equal to mu1(bhat) for bhat= Bhat[j,].
posterior_mean_matrix <- function(Bhat, Vinv, U1){
  return(Bhat %*% (Vinv %*% U1))
}

compute_posterior_matrices <-
  function (data, Ulistinv, posterior_cov, posterior_weights) {

    R = mashr:::n_conditions(data)
    # keep data dimension names
    effect_names = rownames(data$Bhat)
    condition_names = colnames(data$Bhat)
    posterior_matrices = compute_posterior_matrices_general_R(data, Ulistinv, posterior_cov, posterior_weights)
    # Set dimension names
    for (i in names(posterior_matrices)) {
      if (length(dim(posterior_matrices[[i]])) == 2) {
        colnames(posterior_matrices[[i]]) <- condition_names
        rownames(posterior_matrices[[i]]) <- effect_names
      }
    }
    if (length(dim(posterior_matrices$PosteriorCov)) == 3)
      dimnames(posterior_matrices$PosteriorCov) <- list(condition_names, condition_names, effect_names)
    return(posterior_matrices)
}

compute_posterior_matrices_general_R=function(data,Ulistinv, posterior_cov,posterior_weights){
  R=mashr:::n_conditions(data)
  J=mashr:::n_effects(data)
  P=length(posterior_cov)

  # allocate arrays for returned results
  res_post_mean=array(NA,dim=c(J,R))
  res_post_mean2 = array(NA,dim=c(J,R)) #mean squared value
  res_post_zero=array(NA,dim=c(J,R))
  res_post_neg=array(NA,dim=c(J,R))

  # allocate arrays for temporary calculations
  post_mean=array(NA,dim=c(P,R))
  post_mean2 = array(NA,dim=c(P,R)) #mean squared value
  post_zero=array(NA,dim=c(P,R))
  post_neg=array(NA,dim=c(P,R))

  U1 = posterior_cov

  for(j in 1:J){
    bhat=as.vector(t(data$Bhat[j,]))##turn j into a R x 1 vector

    for(p in 1:P){
      mu1 <- as.array(posterior_mean(bhat, Ulistinv[[p]], U1[[p]]))
      # Transformation for mu
      muA <- (mu1 * data$Shat_alpha[j,])

      # Transformation for Cov
      covU = data$Shat_alpha[j,] * t(data$Shat_alpha[j,] * U1[[p]])
      pvar = covU

      post_var = pmax(0,diag(pvar)) # Q vector posterior variance
      post_mean[p,]= muA
      post_mean2[p,] = muA^2 + post_var #post_var is the posterior variance

      post_neg[p,] = ifelse(post_var==0,0,pnorm(0,mean=muA,sqrt(post_var),lower.tail=T))
      post_zero[p,] = ifelse(post_var==0,1,0)

    }
    res_post_mean[j,] = posterior_weights[j,] %*% post_mean
    res_post_mean2[j,] = posterior_weights[j,] %*% post_mean2
    res_post_zero[j,] = posterior_weights[j,] %*% post_zero
    res_post_neg[j,] = posterior_weights[j,] %*% post_neg
  }
  res_post_sd = sqrt(res_post_mean2 - res_post_mean^2)
  res_lfsr = compute_lfsr(res_post_neg,res_post_zero)

  posterior_matrices = list(PosteriorMean = res_post_mean,
                            PosteriorSD   = res_post_sd,
                            lfdr          = res_post_zero,
                            NegativeProb  = res_post_neg,
                            lfsr          = res_lfsr)
  return(posterior_matrices)
}
ROC.table = function(data, model){
  sign.test = data*model$result$PosteriorMean
  thresh.seq = seq(0, 1, by=0.005)[-1]
  m.seq = matrix(0,length(thresh.seq), 2)
  colnames(m.seq) = c('TPR', 'FPR')
  for(t in 1:length(thresh.seq)){
    m.seq[t,] = c(sum(sign.test>0 & model$result$lfsr <= thresh.seq[t])/sum(data!=0),
                  sum(data==0 & model$result$lfsr <=thresh.seq[t])/sum(data==0))
  }
  return(m.seq)
}

library(knitr)
library(kableExtra)
library(mvtnorm)
library(mashr)
Loading required package: ashr

Attaching package: 'mashr'
The following object is masked _by_ '.GlobalEnv':

    compute_posterior_matrices

The model is on z scores \[ \hat{\mathbf{z}}_j \sim \sum_{k=1}^{K} \sum_{l=1}^{L} \pi_{kl} N(0, (1+\omega_{l})U_{k}) \] We can also write the model as \[ \hat{\mathbf{z}}_j | \mathbf{z}_j, \gamma_{j}=(k, l) \sim N(\mathbf{z}_j, U_{k}) \\ \mathbf{z}_j|\gamma_{j}=(k, l) \sim N(0, \omega_{l}U_{k}) \\ P(\gamma_{j}=(l,k)) = \pi_{kl} \] We assume \(U_k\) are all invertible. Under the null, \(\omega_l = 0\).

Simulate Simple 1

I simulate null data with common error.

\[ \hat{\mathbf{z}}_j | \mathbf{z}_j \sim N(\mathbf{z}_j, I) \\ \mathbf{z}_j = \delta_0 \]

set.seed(1)
n = 10000; p = 2
B = matrix(0,n,p)
Bhat = rmvnorm(n, sigma = diag(p))
data = mash_set_data(Bhat=Bhat, Shat=1)

Ulist = cov_canonical(data, cov_methods = c('identity', 'simple_het'))

model = DifferentCov(data, Ulist)
m.model = mash(data, Ulist, verbose = FALSE)
loglike = c(get_loglik(model), get_loglik(m.model))
sig = c(length(get_significant_results(model)), length(get_significant_results(m.model)))
rrmse = c(sqrt(mean((B - model$result$PosteriorMean)^2)/mean((B - Bhat)^2)), sqrt(mean((B - m.model$result$PosteriorMean)^2)/mean((B - Bhat)^2)))
tmp = cbind(loglike, sig, rrmse)
colnames(tmp) = c('logliklihood', '#sig', 'RRMSE')
rownames(tmp) = c('new', 'mash')
tmp %>% kable() %>% kable_styling()
logliklihood #sig RRMSE
new -28410.56 0 0.0031717
mash -28410.60 0 0.0000000
par(mfrow=c(1,2))
barplot(get_estimated_pi(model, dimension = 'grid'), las=2, names.arg = round(model$fitted_g$grid, 2), main='new')
barplot(get_estimated_pi(model), las=2, main='new')

Expand here to see past versions of unnamed-chunk-5-1.png:
Version Author Date
d144bac zouyuxin 2018-12-12
7ff2647 zouyuxin 2018-12-11
8ba1a51 zouyuxin 2018-12-11

barplot(get_estimated_pi(m.model), las=2, main='mash')

Expand here to see past versions of unnamed-chunk-6-1.png:
Version Author Date
7ff2647 zouyuxin 2018-12-11

Simulate Simple 2

I simulate null data with different errors. \[ \hat{\mathbf{z}}_j | \mathbf{z}_j \sim \frac{1}{2}N(\mathbf{z}_j, I) + \frac{1}{2}N(\mathbf{z}_j,\left( \begin{matrix} 1 & 0.75 \\ 0.75 & 1\end{matrix} \right)) \\ \mathbf{z}_j = \delta_0 \]

set.seed(1)
B = matrix(0,n,p)
Bhat1 = rmvnorm(n/2, sigma = diag(p))
V = matrix(0.75, p,p); diag(V) = 1
Bhat2 = rmvnorm(n/2, sigma = V)
Bhat = rbind(Bhat1, Bhat2)
V.true = array(0,dim=c(p,p,n))
V.true[,,1:(n/2)] = diag(p)
V.true[,,(n/2 + 1):n] = V
data = mash_set_data(Bhat=Bhat, Shat=1)

Ulist = cov_canonical(data, cov_methods = c('identity', 'simple_het'))

model = DifferentCov(data, Ulist)

Vhat = estimate_null_correlation(data, Ulist)
m.model.current = Vhat$mash.model

data.true = mash_update_data(data, V = V.true)
m.model.true = mash(data.true, Ulist, algorithm.version = 'R', verbose=FALSE)
loglike = c(get_loglik(model), get_loglik(m.model.current), get_loglik(m.model.true))
sig = c(length(get_significant_results(model)), length(get_significant_results(m.model.current)), length(get_significant_results(m.model.true)))
rrmse = c(sqrt(mean((B - model$result$PosteriorMean)^2)/mean((B - Bhat)^2)), sqrt(mean((B - m.model.current$result$PosteriorMean)^2)/mean((B - Bhat)^2)), sqrt(mean((B - m.model.true$result$PosteriorMean)^2)/mean((B - Bhat)^2)))
tmp = cbind(loglike, sig, rrmse)
colnames(tmp) = c('logliklihood', '#sig', 'RRMSE')
rownames(tmp) = c('new', 'mash current', 'mash true')
tmp %>% kable() %>% kable_styling()
logliklihood #sig RRMSE
new -27449.11 0 0.0070456
mash current -27585.51 2 0.0816107
mash true -26343.82 0 0.0021181
par(mfrow=c(1,2))
barplot(get_estimated_pi(model, dimension = 'grid'), las=2, names.arg = round(model$fitted_g$grid, 2), main='new')
barplot(get_estimated_pi(model), las=2, main='new')

Expand here to see past versions of unnamed-chunk-9-1.png:
Version Author Date
d144bac zouyuxin 2018-12-12
7ff2647 zouyuxin 2018-12-11
8ba1a51 zouyuxin 2018-12-11

barplot(get_estimated_pi(m.model.current), las=2, main='mash current')

Expand here to see past versions of unnamed-chunk-10-1.png:
Version Author Date
7ff2647 zouyuxin 2018-12-11
8ba1a51 zouyuxin 2018-12-11

barplot(get_estimated_pi(m.model.true), las=2, main='mash true')

Expand here to see past versions of unnamed-chunk-11-1.png:
Version Author Date
7ff2647 zouyuxin 2018-12-11

Simulate with signal 1

I simulate data with signal, but common error. \[ \hat{\mathbf{z}}_j | \mathbf{z}_j \sim N(\mathbf{z}_j, I) \\ \mathbf{z}_j \sim \frac{1}{2}\delta_0 + \frac{1}{2} N(0, I) \]

set.seed(1)
B1 = matrix(0,n/2,p)
B2 = matrix(rnorm((n/2)*p),n/2,p)
B = rbind(B1, B2)
Ehat = rmvnorm(n, sigma = diag(p))
Bhat = B + Ehat

data = mash_set_data(Bhat=Bhat, Shat=1)

Ulist = cov_canonical(data, cov_methods = c('identity', 'simple_het'))

model = DifferentCov(data, Ulist)
m.model = mash(data, Ulist, verbose = FALSE)
loglike = c(get_loglik(model), get_loglik(m.model))
sig = c(length(get_significant_results(model)), length(get_significant_results(m.model)))
fd = c(sum(get_significant_results(model)<=5000), sum(get_significant_results(m.model)<=5000))
rrmse = c(sqrt(mean((B - model$result$PosteriorMean)^2)/mean((B - Bhat)^2)), sqrt(mean((B - m.model$result$PosteriorMean)^2)/mean((B - Bhat)^2)))
tmp = cbind(loglike, sig, fd, rrmse)
colnames(tmp) = c('logliklihood', '#sig', 'false pos','RRMSE')
rownames(tmp) = c('new', 'mash')
tmp %>% kable() %>% kable_styling()
logliklihood #sig false pos RRMSE
new -32407.42 122 1 0.5716567
mash -32407.63 121 1 0.5715801
roc.seq = ROC.table(B, model)
plot(roc.seq[,'FPR'], roc.seq[,'TPR'], type='l', xlab = 'FPR', ylab='TPR',
       main=paste0(' True Pos vs False Pos'), cex=1.5, lwd = 1.5, col = 'cyan')
roc.seq = ROC.table(B, m.model)
lines(roc.seq[,'FPR'], roc.seq[,'TPR'], col='purple', lwd = 1.5)
legend('bottomright', c('new','mash'), col=c('cyan','purple'),
           lty=c(1,1), lwd=c(1.5,1.5))

Expand here to see past versions of unnamed-chunk-14-1.png:
Version Author Date
d144bac zouyuxin 2018-12-12
7ff2647 zouyuxin 2018-12-11
8ba1a51 zouyuxin 2018-12-11

par(mfrow=c(1,2))
barplot(get_estimated_pi(model, dimension = 'grid'), las=2, names.arg = round(model$fitted_g$grid, 2), main='new')
barplot(get_estimated_pi(model), las=2, main='new')

Expand here to see past versions of unnamed-chunk-15-1.png:
Version Author Date
d144bac zouyuxin 2018-12-12
7ff2647 zouyuxin 2018-12-11
8ba1a51 zouyuxin 2018-12-11

barplot(get_estimated_pi(m.model), las=2, main='mash')

Expand here to see past versions of unnamed-chunk-16-1.png:
Version Author Date
7ff2647 zouyuxin 2018-12-11

Simulate with signal 2

I simulate data with signal, but different error.

\[ \hat{\mathbf{z}}_j \sim \frac{1}{2} N(0, I) + \frac{1}{2}N(0, \left( \begin{matrix} 1 & 0.75 \\ 0.75 & 1\end{matrix} \right) + \left( \begin{matrix} 1 & 0.75 \\ 0.75 & 1\end{matrix} \right)) \\ \mathbf{z}_j \sim \frac{1}{2}\delta_0 + \frac{1}{2} N(0, \left( \begin{matrix} 1 & 0.75 \\ 0.75 & 1\end{matrix} \right)) \]

set.seed(1)
B1 = matrix(0,n/2,p)
B2 = rmvnorm(n/2, sigma = V)
B = rbind(B1, B2)

Ehat1 = rmvnorm(n/2, sigma = diag(p))
Ehat2 = rmvnorm(n/2, sigma = V)
Ehat = rbind(Ehat1, Ehat2)

V.true = array(0,dim=c(p,p,n))
V.true[,,1:(n/2)] = diag(p)
V.true[,,(n/2 + 1):n] = V

# V.random = array(0, dim=c(p,p,n))
# ind = sample(1:n, n/2)
# V.random[,,ind] = V
# V.random[,,-ind] = diag(p)

# Ehat = matrix(0, n, p)
# Ehat[ind,] = rmvnorm(n/2, sigma = V)
# Ehat[-ind,] = rmvnorm(n/2, sigma = diag(p))

Bhat = B + Ehat

data = mash_set_data(Bhat=Bhat, Shat=1)

Ulist = cov_canonical(data, cov_methods = c('identity', 'simple_het'))

model = DifferentCov(data, Ulist)

Vhat = estimate_null_correlation(data, Ulist)
m.model.current = Vhat$mash.model

data.true = mash_update_data(data, V = V.true)
m.model.true = mash(data.true, Ulist, algorithm.version = 'R', verbose = FALSE)
loglike = c(get_loglik(model), get_loglik(m.model.current), get_loglik(m.model.true))
sig = c(length(get_significant_results(model)), length(get_significant_results(m.model.current)), length(get_significant_results(m.model.true)))
fd = c(sum(get_significant_results(model)<=5000), sum(get_significant_results(m.model.current)<=5000), sum(get_significant_results(m.model.true)<=5000))
rrmse = c(sqrt(mean((B - model$result$PosteriorMean)^2)/mean((B - Bhat)^2)), sqrt(mean((B - m.model.current$result$PosteriorMean)^2)/mean((B - Bhat)^2)), sqrt(mean((B - m.model.true$result$PosteriorMean)^2)/mean((B - Bhat)^2)))
tmp = cbind(loglike, sig, fd, rrmse)
colnames(tmp) = c('logliklihood', '#sig', 'false pos','RRMSE')
rownames(tmp) = c('new', 'mash current', 'mash true')
tmp %>% kable() %>% kable_styling()
logliklihood #sig false pos RRMSE
new -30834.78 340 0 0.5563476
mash current -30935.62 138 1 0.5727592
mash true -30282.03 184 3 0.5824576
roc.seq = ROC.table(B, model)
plot(roc.seq[,'FPR'], roc.seq[,'TPR'], type='l', xlab = 'FPR', ylab='TPR',
       main=paste0(' True Pos vs False Pos'), cex=1.5, lwd = 1.5, col = 'cyan')
roc.seq = ROC.table(B, m.model.current)
lines(roc.seq[,'FPR'], roc.seq[,'TPR'], col='purple', lwd = 1.5)
roc.seq = ROC.table(B, m.model.true)
lines(roc.seq[,'FPR'], roc.seq[,'TPR'], col='red', lwd = 1.5)
legend('bottomright', c('new','mash current', 'mash true'), col=c('cyan','purple', 'red'),
           lty=c(1,1,1), lwd=c(1.5,1.5, 1.5))

Expand here to see past versions of unnamed-chunk-19-1.png:
Version Author Date
d144bac zouyuxin 2018-12-12
7ff2647 zouyuxin 2018-12-11
8ba1a51 zouyuxin 2018-12-11

par(mfrow=c(1,2))
barplot(get_estimated_pi(model, dimension = 'grid'), las=2, names.arg = round(model$fitted_g$grid, 2), main='new')
barplot(get_estimated_pi(model), las=2, main='new')

Expand here to see past versions of unnamed-chunk-20-1.png:
Version Author Date
d144bac zouyuxin 2018-12-12
7ff2647 zouyuxin 2018-12-11
8ba1a51 zouyuxin 2018-12-11

barplot(get_estimated_pi(m.model.current), las=2, main='mash current')

Expand here to see past versions of unnamed-chunk-21-1.png:
Version Author Date
7ff2647 zouyuxin 2018-12-11
8ba1a51 zouyuxin 2018-12-11

barplot(get_estimated_pi(m.model.true), las=2, main='mash true')

Expand here to see past versions of unnamed-chunk-22-1.png:
Version Author Date
7ff2647 zouyuxin 2018-12-11

Session information

sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS  10.14.2

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] mashr_0.2.19.0555 ashr_2.2-23       mvtnorm_1.0-8     kableExtra_0.9.0 
[5] knitr_1.20        plyr_1.8.4       

loaded via a namespace (and not attached):
 [1] lattice_0.20-35   Rmosek_8.0.69     colorspace_1.3-2 
 [4] htmltools_0.3.6   viridisLite_0.3.0 yaml_2.2.0       
 [7] rlang_0.3.0.1     R.oo_1.22.0       mixsqp_0.1-92    
[10] pillar_1.3.0      R.utils_2.7.0     REBayes_1.3      
[13] foreach_1.4.4     stringr_1.3.1     munsell_0.5.0    
[16] workflowr_1.1.1   rvest_0.3.2       R.methodsS3_1.7.1
[19] codetools_0.2-15  evaluate_0.12     doParallel_1.0.14
[22] pscl_1.5.2        parallel_3.5.1    highr_0.7        
[25] Rcpp_1.0.0        readr_1.1.1       scales_1.0.0     
[28] backports_1.1.2   rmeta_3.0         truncnorm_1.0-8  
[31] abind_1.4-5       hms_0.4.2         digest_0.6.18    
[34] stringi_1.2.4     grid_3.5.1        rprojroot_1.3-2  
[37] tools_3.5.1       magrittr_1.5      tibble_1.4.2     
[40] crayon_1.3.4      whisker_0.3-2     pkgconfig_2.0.2  
[43] MASS_7.3-50       Matrix_1.2-14     SQUAREM_2017.10-1
[46] xml2_1.2.0        assertthat_0.2.0  rmarkdown_1.10   
[49] httr_1.3.1        rstudioapi_0.8    iterators_1.0.10 
[52] R6_2.3.0          git2r_0.23.0      compiler_3.5.1   

This reproducible R Markdown analysis was created with workflowr 1.1.1