Last updated: 2019-02-11

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(20181220)

    The command set.seed(20181220) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: 2417cdf

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .Rhistory
        Ignored:    .Rproj.user/
        Ignored:    dsc-mash-gtex/
    
    Untracked files:
        Untracked:  .DS_Store
        Untracked:  code/Demo_SumstatQuery.R
        Untracked:  data/.DS_Store
        Untracked:  data/cor_tissues_non_ash_voom_pearson.rda
        Untracked:  data/gene_names_GTEX_V6.txt
        Untracked:  data/genewide_ash_out_tissue_mat_halfuniform_non_mode.rda
        Untracked:  data/order_index.rda
        Untracked:  data/samples_id.txt
        Untracked:  data/sexde/
        Untracked:  data/tissuewide_pearson_halfuniform_tissuewide_non_mode.rda
        Untracked:  output/.DS_Store
        Untracked:  output/GTExV6/
        Untracked:  output/GTExV6pipeline/
        Untracked:  output/corshrink_noise_gene_1.rds
        Untracked:  output/sexde/
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    Rmd 2417cdf zouyuxin 2019-02-11 wflow_publish(“analysis/SexDEpipeline.Rmd”)


library(mashr)
Loading required package: ashr
library(knitr)
library(kableExtra)
library(ggplot2)
library(gridExtra)
sexde <- readRDS('data/sexde/sexde.rds')

missing.tissues <- c(7, 24, 25, 31, 40, 43, 49, 51, 52)
gtex.colors <- read.table("https://github.com/stephenslab/gtexresults/blob/master/data/GTExColors.txt?raw=TRUE", sep = '\t', comment.char = '')[-missing.tissues, 2]
gtex.colors <- as.character(gtex.colors)

The results are from mashr_flashr_pipeline. We include the data driven covariance matrices based on the first three principal components and factors from flash.

Flash model based on effects:

factors = readRDS('output/sexde/sexde.EE.flash.model.rds')$factors
par(mfrow = c(2, 3))
for(k in 1:7){
  barplot(factors[,k], col=gtex.colors, names.arg = FALSE, axes = FALSE, main=paste0("Factor ", k))
}

Flash model based on z scores:

factors = readRDS('output/sexde/sexde.EZ.flash.model.rds')$factors
par(mfrow = c(2, 3))
for(k in 1:16){
  barplot(factors[,k], col=gtex.colors, names.arg = FALSE, axes = FALSE, main=paste0("Factor ", k))
}

# read model
m_mle_EE = readRDS('output/sexde/sexde.EE.FL_PC3.V_mle.mash_model.rds')
m_mle_EE$result = readRDS('output/sexde/sexde.EE.FL_PC3.V_mle.posterior.random.script.rds')
m_mle_EZ = readRDS('output/sexde/sexde.EZ.FL_PC3.V_mle.mash_model.rds')
m_mle_EZ$result = readRDS('output/sexde/sexde.EZ.FL_PC3.V_mle.posterior.random.rds')

Estimated null cor V

V.mle.EE = readRDS('output/sexde/sexde.EE.FL_PC3.V_mle.rds')
corrplot::corrplot(V.mle.EE, method='color', type='upper', tl.col="black", tl.srt=45, tl.cex = 0.5, diag = FALSE, col=colorRampPalette(c("blue", "white", "red"))(200), cl.lim = c(-1,1), title = 'MLE EE', mar=c(0,0,5,0))

V.mle.EZ = readRDS('output/sexde/sexde.EZ.FL_PC3.V_mle.rds')
corrplot::corrplot(V.mle.EZ, method='color', type='upper', tl.col="black", tl.srt=45, tl.cex = 0.5, diag = FALSE, col=colorRampPalette(c("blue", "white", "red"))(200), cl.lim = c(-1,1), title = 'MLE EZ', mar=c(0,0,5,0))

Results

logliks = c(get_loglik(m_mle_EE))
logliks_EZ = c(get_loglik(m_mle_EZ))
tmp = cbind(logliks, logliks_EZ)
row.names(tmp) = c('MLE')
colnames(tmp) = c('EE', 'EZ')
tmp %>% kable() %>% kable_styling()
EE EZ
MLE 1696029 1709549
par(mfrow=c(1,2))
barplot(get_estimated_pi(m_mle_EE), las=2, cex.names = 0.7, main = 'MLE EE')

barplot(get_estimated_pi(m_mle_EZ), las=2, cex.names = 0.7, main = 'MLE EZ')

Number of significant:

numsig_EE = c(length(get_significant_results(m_mle_EE)))
numsig_EZ = c(length(get_significant_results(m_mle_EZ)))
tmp = cbind(numsig_EE, numsig_EZ)
row.names(tmp) = c('MLE')
colnames(tmp) = c('EE', 'EZ')
tmp %>% kable() %>% kable_styling()
EE EZ
MLE 17635 20023

The pairwise sharing by magnitude

par(mfrow = c(1,2))
clrs=colorRampPalette(rev(c('darkred', 'red','orange','yellow','cadetblue1', 'cyan', 'dodgerblue4', 'blue','darkorchid1','lightgreen','green', 'forestgreen','darkolivegreen')))(200)

x           <- get_pairwise_sharing(m_mle_EE)
colnames(x) <- colnames(get_lfsr(m_mle_EE))
rownames(x) <- colnames(x)
corrplot::corrplot(x, method='color', type='upper', tl.col="black", tl.srt=45, tl.cex = 0.7, diag = FALSE, col=clrs, cl.lim = c(0,1), title = 'MLE EE', mar=c(0,0,5,0))

x           <- get_pairwise_sharing(m_mle_EZ)
colnames(x) <- colnames(get_lfsr(m_mle_EZ))
rownames(x) <- colnames(x)
corrplot::corrplot(x, method='color', type='upper', tl.col="black", tl.srt=45, tl.cex = 0.7, diag = FALSE, col=clrs, cl.lim = c(0,1), title = 'MLE EZ', mar=c(0,0,5,0))

meta_result = read.table('data/sexde/meta.sexde.svs.FE.allgenes.txt', header = TRUE)
meta_gene = as.character(meta_result$gene[meta_result$qval < 0.05])
length(intersect(meta_gene, names(get_significant_results(m_mle_EZ))))
[1] 9707

There are 11929 significant genes from meta analysis, 9707 of them are significant in mash model (EZ) as well.

The gene significant in meta analysis, not in MLE EZ:

ind.name = setdiff(meta_gene, names(get_significant_results(m_mle_EZ)))[1]
ind = which(row.names(sexde$random.b) == ind.name)
stronggene = data.frame(sexde$random.b[ind,])
colnames(stronggene) = 'EffectSize'
stronggene$Group = row.names(stronggene)
stronggene$se = sexde$random.s[ind,]
p1 = ggplot(stronggene, aes(y = EffectSize, x = Group)) + 
  geom_point(show.legend = FALSE, color=gtex.colors) + coord_flip() + ggtitle('Row') + ylim(c(-1.3,1.1)) + geom_errorbar(aes(ymin=EffectSize-1.96*se, ymax=EffectSize+1.96*se), width=0.4, show.legend = FALSE, color=gtex.colors) + 
  theme_bw(base_size=12) + theme(axis.text.y = element_text(colour = gtex.colors, size = 6))

stronggeneMLE = data.frame(m_mle_EZ$result$PosteriorMean[ind,])
colnames(stronggeneMLE) = 'EffectSize'
stronggeneMLE$Group = row.names(stronggeneMLE)
stronggeneMLE$se = m_mle_EZ$result$PosteriorSD[ind,]
p2 = ggplot(stronggeneMLE, aes(y = EffectSize, x = Group)) + 
  geom_point(show.legend = FALSE, color=gtex.colors) + coord_flip() + ggtitle('MLE EZ') + ylim(c(-1.3,1.1)) + 
  geom_errorbar(aes(ymin=EffectSize-1.96*se, ymax=EffectSize+1.96*se), width=0.4, show.legend = FALSE, color=gtex.colors) + 
  theme_bw(base_size=12) + theme(axis.text.y = element_text(colour = gtex.colors, size = 6))

grid.arrange(p1, p2, nrow = 1)

Session information

sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS  10.14.2

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] gridExtra_2.3     ggplot2_3.1.0     kableExtra_1.0.1  knitr_1.20       
[5] mashr_0.2.19.0555 ashr_2.2-26      

loaded via a namespace (and not attached):
 [1] tidyselect_0.2.5  corrplot_0.84     purrr_0.2.5      
 [4] lattice_0.20-38   colorspace_1.4-0  htmltools_0.3.6  
 [7] viridisLite_0.3.0 yaml_2.2.0        rlang_0.3.1      
[10] R.oo_1.22.0       mixsqp_0.1-93     pillar_1.3.1     
[13] withr_2.1.2       glue_1.3.0        R.utils_2.7.0    
[16] bindrcpp_0.2.2    bindr_0.1.1       foreach_1.4.4    
[19] plyr_1.8.4        stringr_1.3.1     munsell_0.5.0    
[22] gtable_0.2.0      workflowr_1.1.1   rvest_0.3.2      
[25] R.methodsS3_1.7.1 mvtnorm_1.0-8     codetools_0.2-16 
[28] evaluate_0.12     labeling_0.3      pscl_1.5.2       
[31] doParallel_1.0.14 parallel_3.5.1    highr_0.7        
[34] Rcpp_1.0.0        readr_1.3.1       backports_1.1.3  
[37] scales_1.0.0      rmeta_3.0         webshot_0.5.1    
[40] truncnorm_1.0-8   abind_1.4-5       hms_0.4.2        
[43] digest_0.6.18     stringi_1.2.4     dplyr_0.7.8      
[46] grid_3.5.1        rprojroot_1.3-2   tools_3.5.1      
[49] magrittr_1.5      lazyeval_0.2.1    tibble_2.0.1     
[52] crayon_1.3.4      whisker_0.3-2     pkgconfig_2.0.2  
[55] MASS_7.3-51.1     Matrix_1.2-15     SQUAREM_2017.10-1
[58] xml2_1.2.0        assertthat_0.2.0  rmarkdown_1.11   
[61] httr_1.4.0        rstudioapi_0.9.0  iterators_1.0.10 
[64] R6_2.3.0          git2r_0.24.0      compiler_3.5.1   

This reproducible R Markdown analysis was created with workflowr 1.1.1