Last updated: 2020-02-20
Checks: 7 0
Knit directory: GTEx/
This reproducible R Markdown analysis was created with workflowr (version 1.5.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20181220)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: dsc-mash-gtex/
Untracked files:
Untracked: .DS_Store
Untracked: analysis/.DS_Store
Untracked: code/Demo_SumstatQuery.R
Untracked: code/SexDE.TAU.R
Untracked: code/SexDE_get_genes.R
Untracked: data/.DS_Store
Untracked: data/color_abb_codes.Robj
Untracked: data/cor_tissues_non_ash_voom_pearson.rda
Untracked: data/gene_names_GTEX_V6.txt
Untracked: data/genewide_ash_out_tissue_mat_halfuniform_non_mode.rda
Untracked: data/meta.ivw.sexde_logfc_matrix.sexde.svs.allgenes.v8.FINAL.txt
Untracked: data/order_index.rda
Untracked: data/samples_id.txt
Untracked: data/sexde/
Untracked: data/tissuewide_pearson_halfuniform_tissuewide_non_mode.rda
Untracked: output/.DS_Store
Untracked: output/GTExV6/
Untracked: output/GTExV6pipeline/
Untracked: output/corshrink_noise_gene_1.rds
Untracked: output/sexde.final/
Untracked: output/sexde/
Untracked: pipeline/.DS_Store
Unstaged changes:
Modified: analysis/SexDEPlots.Rmd
Modified: analysis/SexDEpipeline.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view them.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 2e2d2a7 | zouyuxin | 2020-02-20 | wflow_publish(“analysis/SexDEpipeline.final.Rmd”) |
html | 9b98777 | zouyuxin | 2020-02-20 | Build site. |
Rmd | bde0c5e | zouyuxin | 2020-02-20 | wflow_publish(“analysis/SexDEpipeline.final.Rmd”) |
html | 7d4d6e3 | zouyuxin | 2020-01-15 | Build site. |
Rmd | 9594264 | zouyuxin | 2020-01-15 | wflow_publish(“analysis/SexDEpipeline.final.Rmd”) |
html | 9694106 | zouyuxin | 2020-01-15 | Build site. |
Rmd | 1c6ff33 | zouyuxin | 2020-01-15 | wflow_publish(“analysis/SexDEpipeline.final.Rmd”) |
library(mashr)
Loading required package: ashr
library(knitr)
library(kableExtra)
library(ggplot2)
library(gridExtra)
sexde <- readRDS('data/sexde/sexde.data.rds')
load("data/color_abb_codes.Robj")
# Tissue color palette
color_code$Tissue[18] = 'Brain_Spinal_cord_cervical_c.1'
color_code$Tissue[22] = 'Cells_EBV.transformed_lymphocytes'
gtex.colors <- color_code$color
The results are from mashr_flashr_pipeline. We include the data driven covariance matrices based on the first three principal components and factors from flash
.
factors = readRDS('output/sexde.final/outputEE/sexde.data.EE.flash.model.rds')$factors
par(mfrow = c(2, 3))
for(k in 1:10){
barplot(factors[,k], col=gtex.colors, names.arg = FALSE, axes = FALSE, main=paste0("Factor ", k))
}
factors = readRDS('output/sexde.final/outputEZ/sexde.data.EZ.flash.model.rds')$factors
par(mfrow = c(2, 3))
for(k in 1:20){
barplot(factors[,k], col=gtex.colors, names.arg = FALSE, axes = FALSE, main=paste0("Factor ", k))
}
Version | Author | Date |
---|---|---|
9b98777 | zouyuxin | 2020-02-20 |
# read model
m_mle_EE = readRDS('output/sexde.final/outputEE/sexde.ee.fl_pc3.v_mle.mash_model.rds')
m_mle_EZ = readRDS('output/sexde.final/outputEZ/sexde.ez.fl_pc3.v_mle.mash_model.rds')
V.mle.EE = readRDS('output/sexde.final/outputEE/sexde.data.EE.FL_PC3.V_mle.rds')
corrplot::corrplot(V.mle.EE, method='color', type='upper', tl.col="black", tl.srt=45, tl.cex = 0.5, diag = FALSE, col=colorRampPalette(c("blue", "white", "red"))(200), cl.lim = c(-1,1), title = 'MLE EE', mar=c(0,0,5,0))
V.mle.EZ = readRDS('output/sexde.final/outputEZ/sexde.data.EZ.FL_PC3.V_mle.rds')
corrplot::corrplot(V.mle.EZ, method='color', type='upper', tl.col="black", tl.srt=45, tl.cex = 0.5, diag = FALSE, col=colorRampPalette(c("blue", "white", "red"))(200), cl.lim = c(-1,1), title = 'MLE EZ', mar=c(0,0,5,0))
logliks = c(get_loglik(m_mle_EE))
logliks_EZ = c(get_loglik(m_mle_EZ))
tmp = cbind(logliks, logliks_EZ)
row.names(tmp) = c('MLE')
colnames(tmp) = c('EE', 'EZ')
tmp %>% kable() %>% kable_styling()
EE | EZ | |
---|---|---|
MLE | -5797557 | -5787241 |
par(mfrow=c(1,2))
barplot(get_estimated_pi(m_mle_EE), las=2, cex.names = 0.7, main = 'MLE EE')
barplot(get_estimated_pi(m_mle_EZ), las=2, cex.names = 0.7, main = 'MLE EZ')
Number of significant:
numsig_EE = c(length(get_significant_results(m_mle_EE)))
numsig_EZ = c(length(get_significant_results(m_mle_EZ)))
tmp = cbind(numsig_EE, numsig_EZ)
row.names(tmp) = c('MLE')
colnames(tmp) = c('EE', 'EZ')
tmp %>% kable() %>% kable_styling()
EE | EZ | |
---|---|---|
MLE | 15027 | 15984 |
The pairwise sharing by magnitude
par(mfrow = c(1,2))
clrs=colorRampPalette(rev(c('darkred', 'red','orange','yellow','cadetblue1', 'cyan', 'dodgerblue4', 'blue','darkorchid1','lightgreen','green', 'forestgreen','darkolivegreen')))(200)
x <- get_pairwise_sharing(m_mle_EE)
colnames(x) <- colnames(get_lfsr(m_mle_EE))
rownames(x) <- colnames(x)
corrplot::corrplot(x, method='color', type='upper', tl.col="black", tl.srt=45, tl.cex = 0.7, diag = FALSE, col=clrs, cl.lim = c(0,1), title = 'MLE EE', mar=c(0,0,5,0))
x <- get_pairwise_sharing(m_mle_EZ)
colnames(x) <- colnames(get_lfsr(m_mle_EZ))
rownames(x) <- colnames(x)
corrplot::corrplot(x, method='color', type='upper', tl.col="black", tl.srt=45, tl.cex = 0.7, diag = FALSE, col=clrs, cl.lim = c(0,1), title = 'MLE EZ', mar=c(0,0,5,0))
meta_result = read.table('data/sexde/meta.ivw.sexde_logfc_matrix.v8.MASH.txt', header = TRUE)
meta_gene = as.character(meta_result$gene[meta_result$padj < 0.05])
meta_gene = sapply(strsplit(meta_gene, '_', fixed = TRUE), function(x) x[1])
length(intersect(meta_gene, names(get_significant_results(m_mle_EZ))))
[1] 8572
There are 9405 significant genes from meta analysis, 8572 of them are significant in mash model (EZ) as well.
The gene significant in meta analysis, not in MLE EZ
:
ind.name = setdiff(meta_gene, names(get_significant_results(m_mle_EZ)))[1]
ind = which(row.names(sexde$random.b) == ind.name)
stronggene = data.frame(sexde$random.b[ind,])
colnames(stronggene) = 'EffectSize'
stronggene$Group = row.names(stronggene)
stronggene$se = sexde$random.s[ind,]
p1 = ggplot(stronggene, aes(y = EffectSize, x = Group)) +
geom_point(show.legend = FALSE, color=gtex.colors) + coord_flip() + ggtitle('Raw') + ylim(c(-1.6,1.1)) + geom_errorbar(aes(ymin=EffectSize-1.96*se, ymax=EffectSize+1.96*se), width=0.4, show.legend = FALSE, color=gtex.colors) +
theme_bw(base_size=12) + theme(axis.text.y = element_text(colour = gtex.colors, size = 6))
stronggeneMLE = data.frame(m_mle_EZ$result$PosteriorMean[ind,])
colnames(stronggeneMLE) = 'EffectSize'
stronggeneMLE$Group = row.names(stronggeneMLE)
stronggeneMLE$se = m_mle_EZ$result$PosteriorSD[ind,]
p2 = ggplot(stronggeneMLE, aes(y = EffectSize, x = Group)) +
geom_point(show.legend = FALSE, color=gtex.colors) + coord_flip() + ggtitle('MLE EZ') + ylim(c(-1.6,1.1)) +
geom_errorbar(aes(ymin=EffectSize-1.96*se, ymax=EffectSize+1.96*se), width=0.4, show.legend = FALSE, color=gtex.colors) +
theme_bw(base_size=12) + theme(axis.text.y = element_text(colour = gtex.colors, size = 6))
grid.arrange(p1, p2, nrow = 1)
sessionInfo()
R version 3.5.3 (2019-03-11)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS 10.15.3
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] gridExtra_2.3 ggplot2_3.2.0 kableExtra_1.1.0 knitr_1.23
[5] mashr_0.2.21.0641 ashr_2.2-41
loaded via a namespace (and not attached):
[1] Rcpp_1.0.3 mvtnorm_1.0-11 lattice_0.20-38
[4] assertthat_0.2.1 zeallot_0.1.0 rprojroot_1.3-2
[7] digest_0.6.23 foreach_1.4.8 truncnorm_1.0-8
[10] R6_2.4.1 plyr_1.8.5 backports_1.1.5
[13] evaluate_0.13 highr_0.8 httr_1.4.0
[16] pillar_1.4.2 rlang_0.4.2 lazyeval_0.2.2
[19] pscl_1.5.2 rstudioapi_0.10 irlba_2.3.3
[22] whisker_0.3-2 Matrix_1.2-15 rmarkdown_1.13
[25] labeling_0.3 webshot_0.5.1 readr_1.3.1
[28] stringr_1.4.0 munsell_0.5.0 mixsqp_0.3-18
[31] compiler_3.5.3 httpuv_1.5.1 xfun_0.7
[34] pkgconfig_2.0.3 SQUAREM_2020.1 htmltools_0.3.6
[37] tidyselect_0.2.5 tibble_2.1.3 workflowr_1.5.0
[40] codetools_0.2-16 viridisLite_0.3.0 crayon_1.3.4
[43] dplyr_0.8.1 withr_2.1.2 later_0.8.0
[46] MASS_7.3-51.1 grid_3.5.3 gtable_0.3.0
[49] git2r_0.26.1 magrittr_1.5 scales_1.0.0
[52] stringi_1.4.3 fs_1.3.1 promises_1.0.1
[55] doParallel_1.0.15 xml2_1.2.0 vctrs_0.2.0
[58] rmeta_3.0 iterators_1.0.12 tools_3.5.3
[61] glue_1.3.1 purrr_0.3.3 hms_0.5.2
[64] abind_1.4-5 parallel_3.5.3 yaml_2.2.0
[67] colorspace_1.4-1 rvest_0.3.4 corrplot_0.84